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Abstract 

Weitzman (1998, 2001) proposed a simple “gamma discounting” method to characterize the 

term structure of discount rates today from the sole distribution of future spot interest rates. 

This rule which justifies using a smaller discount rate for longer maturities is now used for 

long-term policy evaluations in the UK, France, Norway, and potentially in the US. But we 

show that there is no social preference within the discounted expected utility framework that 

generically supports this pricing model and its underlying criterion, the expected net present 

value rule. Considering a standard Lucas tree economy, we characterize the term structure from 

the joint distribution of future spot interest rates and future consumption levels. When future 

growth rates are serially correlated, efficient discount rates today are decreasing with maturity, 

and the gamma discounting rule yields discount rates that are larger than the efficient ones.  
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1. Introduction 

The exponential nature of discounting at almost any reasonable positive discount rate implies 

that, when comparing alternative investments, their long term impacts do not really matter. 

This so-called short-termism intrinsic to standard discounting has been much criticized, in 

particular in the context of climate change. However, economic theory does not constrain 

discount rates to be independent of maturities.2 Over the last 10 years or so, the United 

Kingdom (HM Treasury (2003)), France (Lebègue (2005)) and Norway (Official Norwegian 

Report (2012)) have used decreasing discount rates for the evaluation of public policies (in 

particular to estimate the social cost of carbon). In 2006, the OECD has published a cost-

benefit manual (Pearce, Atkinson and Mourato, (2006)) that endorses this method.  Moreover, 

the U.S. could consider a revision of the long-term discount rate by allowing it to be smaller 

than the short-term one (Arrow et alii (2013 a,b)). Decreasing discount rates introduce a 

potentially crucial bias in favor of investments that yield safe socioeconomic benefits in the 

distant future. In the U.K. for example, the term structure of discount rates goes from 3.5% for 

the short term, to 1% for long maturities.3 Thus, a short-term policy with a safe return of 3% 

will be considered to be dominated in this country by a long-term project with a safe return of 

only 1%.   

Weitzman (1998, 2001) provided a simple argument that played a key role in the change of 

the evaluation rules prevailing in these countries. Consider a risk free project with a cost C to 

be paid today, and a single sure benefit F occurring in t years. If the compounded interest rate 

for this maturity is r, the future benefit of the project can be transferred to the present by a 

loan of exp( )F rt  today to be reimbursed at the termination date t. The portfolio containing 

the project and the loan has a single payoff which occurs today and is equal to the project’s 

Net Present Value exp( )NPV C F rt    . Obviously, this project is desirable if and only if 

its NPV is positive. Following Weitzman, suppose alternatively that r is uncertain, so that the 

NPV of the safe project is uncertain. In that context, it is intuitive that a risk-neutral investor 

should invest in the project only if its expected NPV is positive. This expected NPV approach 

implies that, before observing r, one should use the certainty equivalent rate of return of 

capital 0
W

tr   to discount a sure cash flow of maturity t, with 0exp( ) exp( )W
tr t E rt   . This 

                                                 
2 There is a normative argument based on the time consistency of decisions in favor of using a constant rate of 
pure preference for the present to discount future changes in utility in the intertemporal social welfare function.  
In this paper, we refer to the discount rate as the rate at which future changes in consumption are discounted. As 
long as its term structure is derived from the discounted expected utility model, it is time consistent.  
3 In France, it goes from 4% to 2%.  



3 
 

discount rate is decreasing in maturity t, and it tends asymptotically to the smallest plausible 

interest rate.  This argument for a decreasing term structure of the discount rate was first 

presented by Weitzman (1998, 2001), followed by Newell and Pizer (2003), Hepburn and 

Groom (2007), Groom, Koundouri, Panopoulou and Pantelidis (2007), Gollier, Koundouri 

and Pantelidis (2008), Freeman (2010), Freeman and Groom (2010), Traeger (2013), and 

Arrow et alii (2013 a,b) for example. Because Weitzman (2001) used a gamma distribution 

for r, this approach based on the expected NPV is often referred to as “gamma discounting”.  

In this paper, we explore the economic foundation of gamma discounting. Various authors 

criticized the use of the expected NPV criterion to value safe projects when the discount rate 

is uncertain. We review this literature in Section 5 of this paper. Following Pazner and Razin 

(1975) and Gollier (2004), the agent could alternatively bring the net benefit of the project 

forward to the terminal date t by a loan of C  today. This generates a net increase in 

consumption of exp( )NFV F C rt   at the termination date t. Under an uncertain interest 

rate r, the risk-neutral investor would find the project desirable if and only if its expected 

NFV is positive, yielding the certainty equivalent discount rates 0
G

tr   with 

0exp( ) exp( )G
tr t E rt  . Observe that the discount rate 0

G
tr   is increasing and tends 

asymptotically to the largest possible r, thereby justifying a shape of the term structure exactly 

opposite to gamma discounting. This is the so-called Weitzman-Gollier paradox. 

In order to solve the paradox, observe first that in the standard discounted expected utility 

model with a representative agent, the risk-neutrality assumption underlying the two rules is 

technically incompatible with an uncertain interest (or discount) rate. Indeed, the Ramsey rule 

(Ramsey (1928)) tells us that if the representative agent is risk-neutral, the interest rate should 

be equal to the rate of pure preference for the present of the representative agent, which is 

certain.  Thus, in order to reconcile the basic ingredient of the gamma discounting approach, 

i.e. uncertain interest rates, with economic theory, one needs to consider a model with a risk-

averse agent. In this paper, we consider the classical Lucas tree economy with an uncertain 

growth rate of consumption and a risk-averse representative agent. We characterize 

simultaneously the distribution of future spot interest rates and the term structure of efficient 

discount rates today, and we compare it to the term structure of gamma discount rates. 

As a preview of the main results of the paper, suppose that shocks to the growth rate of 

consumption are persistent, as documented for example by Bansal and Yaron (2004). This 

implies that future consumption is positively correlated to future spot interest rates. This 
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implies in turn that the present value evaluated at t-1 of a sure benefit occurring at t is 

negatively correlated with consumption at t-1. In other words, transferring to the present a 

future sure benefit through a sequence of short-term loans has a negative consumption-based 

CAPM beta. The gamma discounting rule ignores this fact by implicitly assuming that this 

strategy has a zero beta. To illustrate, consider the case of a safe benefit F occurring in 60 

years. We want to price this asset (a zero-coupon bond) by using the 30-year interest rate 

observed today, together with the uncertain 30-year interest rate that will prevail in 30 years. 

Suppose that one plans to borrow in 30 years the present value of F using the 30-year interest 

rate that will be observable at that time. Let us denote it 30PV . Seen from today, this value is 

uncertain, but one can measure the certainty equivalent of 30PV . Discounting it at the 

currently prevailing 30-year interest rate yields the social value of the asset today. The 

problem is that 30PV  will be negatively correlated with 30c , the consumption level in 30 

years, if shocks to the economy are persistent. The self-insurance feature of 30PV  implies that 

its certainty equivalent is larger than its expectation. Thus, the expected NPV rule 

underestimates the true value of the long-dated benefit F. The gamma discount rate 0 60
Wr  is 

thus too large, yielding an evaluation error that is qualitatively equivalent to discounting at the 

risk-free rate a cash flow with a negative CCAPM beta. Gamma discounting yields short-

termism. 

In Section 2, we derive the standard consumption-based pricing formula for the term structure 

of efficient discount rates, and we show how this formula can be rewritten in the spirit of the 

expected NPV and expected NFV approaches. Section 3 is devoted to the comparison of these 

efficient rates and those derived from the gamma discounting rule. We also provide sufficient 

conditions for the efficient term structure to be increasing or decreasing. These results are 

derived for the two-period case. In Section 4, we generalize our analysis to the multi-period 

case. 

 

2. Efficient discount rates in a Lucas tree economy  

We consider a Lucas (1978) tree economy without any storage technology. The current crop 

and consumption by the representative agent is denoted 0c , and the beliefs about the evolution 

of future crops and consumption levels are given by the exogenous stochastic process 0t tc  . 
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We suppose that the representative agent evaluates her intertemporal welfare by computing 

the discounted flow of her expected utility, where u represents her von Neumann-Morgenstern 

concave utility function. For the sake of simplicity, we assume that the rate of pure preference 

for the present is zero.4  

We first characterize the discount rate that should be used at date 0   to evaluate a sure 

benefit occurring at date t  , conditional to the information available at date   which 

contains c . Obviously, at date  , the representative agent is just indifferent about a project 

yielding c     and exp( )t tc t r      if and only if 

 ( )'( ) '( ),tt r
tu c e E u c

 
  (1) 

where E  is the expectation operator conditional to the information available at date  , with 

0E E . Equation (1) yields the efficient rate tr  to discount at date   a safe benefit 

occurring at date t. In this section, we are particularly interested in the first two periods, for 

which equation (1) yields 

 0 1 1 21 1 2

0 1

'( ) '( )
, ,

'( ) '( )
r rEu c E u c

e e
u c u c

     (2) 

and  

 0 22 2

0

'( )
.

'( )
r Eu c

e
u c

   (3) 

The spot short rate 0 1r   and the spot long rate 0 2r   are known rates that characterize the term 

structure at date 0. These are the efficient rates to be used at date 0 to discount safe benefits 

occurring at dates 1 and 2, respectively. They are also the equilibrium interest rates if markets 

are competitive and frictionless. At date 0, the future spot interest rate 1 2r  is in general 

uncertain. Equations (2) and (3) are standard consumption-based pricing formulas. Following 

Weitzman (1998, 2001), we are interested in determining whether the long discount rate 0 2r 

can be expressed as a function of the spot rates 0 1r   and 1 2r alone. 

                                                 
4 If the rate of pure preference for the present is not zero, all interest rates discussed in this paper should simply 
be reinterpreted as net of this rate. 
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A simple way to compare an immediate benefit 0c to a future benefit 2c  occurring in two 

periods is to invest 0c in the safe asset yielding a sure return 0 1r  in the first period, and then 

an uncertain return 1 2r in the second period. Because of the reinvestment risk, the difficulty 

of this approach is that it requires us to compare the safe future benefit 2c to an uncertain 

future value 2 0 0 1 1 2exp( )FV c r r    of 0c  using compounded interest rates. Obviously, 

they have the same impact on welfare if and only if  

 0 1 1 2
2 2 0 2'( ) '( ) .r rc Eu c c Eu c e      (4) 

In other words, this “future valuation” approach yields a long discount rate 0 2r  which is such 

that 

 0 2 0 1 1 22 2

2

'( )
.

'( )
r r ru c

e E e
Eu c

   
  

 
 (5) 

Consider alternatively the comparison of 0c  to the present value of 2c . Using 

0 2 0 1 1 2exp( )PV c r r      for this purpose is problematic because the future spot rate 1 2r is 

generally unknown at date 0. In particular, 0PV  does not correspond to any economically 

meaningful value, i.e., to an amount that could be borrowed today against the promise of a 

reimbursement 2c in the future.  

We can alternatively transfer the two benefits to increase consumption at date 1. Benefit 0c

can be safely transformed into an increase in 1c  by 0 0 1exp( )c r  . At date 1, after observing 

the spot rate prevailing at that date, benefit 2c can also be safely transformed into an 

immediate increase in consumption by 2 1 2exp( )c r  . However, when evaluated from date 

0, this payoff is uncertain. At date 0, the two benefits have the same impact on intertemporal 

welfare if and only if 

 0 1 1 21
0 2

1

'( )

'( )
r ru c

c e c E e
Eu c

  
    

 
 (6) 

Notice that the right-hand side of this equality is the certainty equivalent of the present value 

of 2c  at date 1. This equation is equivalent to discounting 2c today at rate 0 2r   such that 
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 0 2 0 1 1 22 1

1

'( )
.

'( )
r r ru c

e E e
Eu c

     
  

 
 (7) 

To sum up, equations (3), (5) and (7) are three alternative ways to represent the same efficient 

long discount rate 0 2r  . Using condition (2), it is easy to check that they are equivalent. This 

is summarized in Proposition 1. 

Proposition 1: There are three equivalent ways to define the efficient long discount rate 0 2r  : 

 0 2 0 1 1 2 0 1 1 2

1

2 2 2 1

0 2 1

'( ) '( ) '( )
.

'( ) '( ) '( )
r r r r rEu c u c u c

e E e E e
u c Eu c Eu c

    



       
           

 (8) 

Although equations (5) and (7) link the long discount rate today to the future spot interest rate, 

they fail to attain the objective envisioned by Weitzman (1998, 2001) to fully characterize the 

price of long-dated safe assets from the distribution of the sequence of spot interest rates 

alone. Indeed, the long discount rate described by equation (5) requires information about the 

distribution of consumption 2c and its statistical relation to interest rates, whereas  the long 

discount rate described by equation (7) requires information about the distribution of 

consumption 1c . 

 

3. Link with gamma discounting and decreasing discount rates 

Weitzman (1998, 2001) proposed an alternative discount rate 0 2
Wr  which is based on the 

assumption that when future spot interest rates are uncertain, the efficient discount factor 

should be equal to the expected discount factor. This expected NPV rule yields 

 0 2 0 1 1 2exp( 2 ) exp( ).Wr E r r       (9) 

Notice that risk neutrality provides an inconsistent way to justify this “gamma discounting” 

rule from Proposition 1. When the representative agent is risk-neutral, it is right to say that 

conditions (7) and (9) yield the same discount rate 0 2 0 2
Wr r  . But risk neutrality also implies 

from (2) that 0 1 1 2 0r r    with certainty, so that the gamma discounting rule is trivially 

correct. An alternative solution to match  0 2
Wr   with 0 2r  is obtained by assuming that 1c  is 
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known at date 0. In that case, by the Arrow-Lind Theorem,5 the representative agent is neutral 

to the marginal risk affecting the present value at date 1 of the sure benefit at date 2.   

A third special case arises when future consumption 1c is uncertain but statistically 

independent of the future spot interest rate 1 2r . Equation (7) also implies that 0 2 0 2
Wr r   in 

that case. However, it has long been recognized that interest rates are statistically linked to the 

expected growth of consumption, and that consumption growth is itself subject to cycles. This 

implies that 1c  and 1 2r are generally not independent, so that 0 2 0 2
Wr r  . To examine this 

problem further, we use the concept of Positive Quadrant Dependent (PQD), as defined by 

Lehmann (1966).  

Definition:  We say that a pair of random variables 1 2( , )y y  is PQD if for all 2
1 2( , ) ,a a    

      1 1 2 2 1 1 2 2Pr Pr Pr .y a y a y a y a        (10) 

This states that two random variables are PQD if the probability that they are simultaneously small 

is at least as great as when assuming that they are independent. In short, smaller values of 1y  go 

statistically with smaller values of 2y . PQD implies a positive correlation, but the converse 

statement is not true. However, in the special case of a bivariate normal distribution, PQD is 

equivalent to a positive correlation. In the economic literature, Levy and Paroush (1974) have been 

the first to show that when function 2:f    is supermodular, i.e., has a nonnegative cross 

derivative, then the PQD of 1 2( , )x x implies that 1 2( , )Ef x x is larger than when assuming 

independence.6 The following proposition is a direct application of this result.  

Proposition 2: Suppose that the future consumption level 1c  and the future spot rate 1 2r  are 

positive quadrant dependent. Then, the gamma discount rate 0 2
Wr   defined by equation (9) is 

larger than the efficient discount rate 0 2r  . 

Proof: Observe that function ( , ) '( ) exp( )f c r u c r   is supermodular. If 1c and 1 2r are PQD, 

equation (7) implies that 

                                                 
5 Arrow and Lind (1970) demonstrated that when there is no systematic risk, all marginal projects should be 
evaluated in a risk-neutral way. 
6 Meyer and Strulovici (2012) provide a nice survey of the literature on PQD and its alternative definitions and 
terminologies, together with extensions from bivariate to multivariate functions. 
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 

0 1 0 1

0 2 1 2 1 2

0 1 1 2 0 2

2
1 1

1 1

2

'( ) '( )
'( ) '( )

.
W

r r
r r r

r r r

e e
e E u c e E u c E e

Eu c Eu c

E e e

 
  

  

 
  

  

       

   

 (11) 

It implies that 0 2
Wr   is larger than 0 2r  .  

When shocks to the economic growth rate are persistent, they affect positively at the same 

time future consumption, and the future spot rate. If this positive correlation is strong enough 

to imply PQD, this proposition tells us that the discount rate 0 2
Wr   proposed by Weitzman 

overestimates the efficient discount rate 0 2r  . This is good news for the proponents of a 

decreasing term structure of discount rates who used the gamma discounting argument. The 

intuition of this result is simple. When consumption is positively correlated to interest rates, 

transferring a future safe benefit to the present by a loan yields a present value that is 

negatively correlated to present consumption. Ex ante, before observing consumption, this 

loan has the additional benefit to partially hedge the risk on consumption. This additional 

benefit is overlooked by gamma discounting, in which risk neutrality is assumed. Thus, the 

gamma discounting rule (9) underestimates the social benefit of distant cash flows, and yields 

long discount rates that are too large. The symmetric result holds when 1c and 1 2r are 

negative quadrant dependent. 

Proposition 2 also demonstrates that there is no social preference within the discounted 

expected utility framework that generically supports the gamma discounting rule of Weitzman 

(1998, 2001). In other words, for any utility function of the representative agent, one can find 

an economy 
0t t

c


in which gamma discount rates are inefficient.   

The result of Levy and Paroush (1974) can also be used to determine the slope of the term 

structure of efficient discount rates. Observe that the marginal utility at date 2 can be rewritten 

as 0 1 2'( exp( ))u c x x , which is supermodular if and only if relative prudence 

( ) '''( ) / ''( )P c cu c u c   is uniformly larger than unity. This observation combined with 

equation (3) implies the following result. 

Proposition 3: Suppose that growth rates 1 2( , )x x are positive quadrant dependent and that 

relative prudence is uniformly larger than unity. Then, the efficient long discount rate 0 2r  is 
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smaller than if serial growth rates would be independent with the same marginal 

distributions. 

The symmetric results hold when 1 2( , )x x are negative quadrant dependent. But the recent 

literature on “long run risk” initiated by Bansal and Yaron (2004) tends to validate the 

hypothesis that growth rates of consumption are positively serially correlated.  

Consider the special case with a CRRA utility function with '( )u c c   with 0  , so that 

relative prudence ( ) 1P c   is uniformly larger than unity. The following corollary describes 

the two term structures in that case. It can be interpreted as a side result of Proposition 3, 

since the term structure of efficient discount rates is flat under CRRA when growth rates are 

serially i.i.d.. 

Corollary: Suppose that the representative agent has a CRRA utility function and that the 

serial growth rates of consumption 1x  and 2x  have the same marginal distribution. Then, the 

gamma discount rates have a flat term structure: 0 2 0 1
Wr r  . Moreover, the term structure of 

efficient discount rates is decreasing ( 0 2 0 1r r  )  if the pair of serial growth rates 1 2( , )x x is 

positive quadrant dependent. 

Proof: Because growth rates 1x  and 2x have the same marginal distribution, we have that 

 
 

0 2 0 1 1 2 1 2

0 11 2 1

2
1

2 2 .

Wr r r x x

rx x x

e e E e Ee E E e

Ee Ee Ee e

 

  

  



    

  

       

  
 (12) 

This implies that 0 2 0 1
Wr r  . Because function 1 2 1 2( , ) exp ( )f x x x x    is supermodular, 

we also have that  

  0 2 0 11 2 1
22 2( )r rx x xe Ee Ee e         (13) 

if 1 2( , )x x  is PQD. This concludes the proof of the Corollary.   

Under the PQD of growth rates, the term structure of efficient discount rates is decreasing. 

Gollier (2012) illustrates the second part of this corollary by considering various stochastic 

processes for tc  exhibiting different forms of positive serial interdependence. The link 

between prudence, positive serial interdependence of growth rates and the decreasing nature 
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of the term structure of efficient rates is intuitive: the positive serial interdependence of 

growth rates magnifies the long term risk borne by the representative agent compared to the 

independent case in which the term structure is flat. This induces the prudent agent to bias 

investment decisions towards those that generate sure benefits in the more distant future. This 

is done by using decreasing discount rates. The first part of the Corollary shows that the 

gamma discounting rule fails to recognize this important aspect of choices over time. This 

failure is important enough to yield a flat term structure for t=1,2 for gamma discount rates 

under the assumptions of the corollary. This is illustrated by the following example. 

Example 1: This example illustrates the findings of propositions 2 and 3, and of the corollary. 

We normalize 0 1c  . We assume that '( )u c c   and that 1 2( , )x x  is joint normally 

distributed with tEx  , 2( )tVar x  and 2
1 2cov( , )x x  . This means that 1 2( , )x x is PQD 

if and only if   is positive. We show in the Appendix that 

 2 2 2
1 2 1 1ln (1 ) 0.5 (1 ).r c c             (14) 

This implies that 1 1 2( , )c r is jointly normal. The PQD assumption of 1 1 2( , )c r  in Proposition 

2 holds if and only if   is positive. Finally, if   is positive, we have that 

 2 2 2 2
0 2 0 1 0 20.5 (1 ) 0.5 .Wr r r                (15) 

Observe that the efficient discount rate 0 2r  is the sum of the risk free rate 2 20.5   and a 

risk premium 2 20.5  . This risk premium equals half the product of the systematic risk 

premium 2 and the CCAPM beta of 1 1 2exp( )PV r  . As seen from equation (14), this 

beta is constant and equal to  .   

 

4. Generalization 

In this section, we generalize Proposition 1 to longer maturities. The main ingredients of this 

generalization are the spot rate tr  defined from equation (1) by 

 ( ) '( )
,

'( )
tt r tE u c

e
u c

 



    (16) 
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and the corresponding forward rate tR  defined by 

 ( ) ( )'( ) '( )
.

'( ) '( )
t tt R t rtEu c u c

e E e
Eu c Eu c

  

 

     
   

 
 (17) 

This forward rate tR is the rate to be used today to compare safe benefits occurring at dates 

 and t . It is also the guaranteed interest rate that should be observed on forward credit 

contracts. Equation (17) tells us how to derive this forward rate from the joint distribution of 

the spot rate tr  and of consumption c . The interpretation of its right-hand side is based on 

the loan exp ( )t tPV t r     that can be obtained at date  against a unit reimbursement at 

date t  . Seen from date 0,  tPV  is uncertain. Of course, at the margin, the representative 

agent is indifferent at date 0 to consume 1 at date t, or the uncertain tPV  at date  . The 

RHS of (17) is the sure increase in consumption at date   that has the same welfare effect at 

date 0 than consuming the uncertain payoff tPV at date  . In other words, it is the certainty 

equivalent increase in consumption at date  of a unit benefit at date t, evaluated from date 0.   

In the following proposition, we link the term structure of efficient discount rates today to the 

joint distribution of spot one-period-ahead rates and consumption levels. We allow for 

arbitrary interim evaluation dates 0 10 ... n t       . Although these dates are arbitrary, 

the idea is to apply Proposition 4 to a partition of [0, ]t that is such that a liquid risk free zero-

coupon bond can be traded within each subperiod 1[ , ]i i   , so that its equilibrium rate 
1i i

r  

and its associated discount factor are economically meaningful. 

Proposition 4: There are three equivalent ways to define the efficient long discount rate 0 tr  : 

 1
0

0

'( )
Ramsey rule: ln

'( )
t

t

Eu c
r t

u c


    (18) 

 
1

1 10
( )1

0

'( )
Expected Future Value: ln

'( )

n
i i i ii

rt
t

t

u c
r t E e

Eu c
  


  




   
 

 (19) 

 1 1

1

1 1 ( )1 1
0 10 0

'( )
Present Value: ( ) ln .

'( )
i i i i

i i

n n r

t i ii i

u c
r t R t E e

Eu c
  

 


    



    
   

 
     

 
  (20) 

Proof: See the Appendix. 
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These three equations can be obtained by examining the impact on social welfare of three 

different strategies to allocate a sure benefit tF  arising at date t. The Ramsey rule (18) 

consists in consuming tF  at that date, and to determine which sure increase in consumption 

today yields the same impact on intertemporal welfare. The “expected future value” rule (19) 

consists in determining the amount to be invested today in a roll-over investment in the one-

period-maturity risk free asset that yields an uncertain increase in consumption at date t 

generating the same increase in welfare than consuming tF  at date t. Finally, the “present 

value” rule (20) is obtained by valuing tF  through a sequence of backward risk-adjusted PV 

computations. 

None of these rules comes close to the Weitzman’s gamma discounting rule 0
W

tr   given by the 

following equation: 

 
1

1 10 0
( )

.
n

W
i i i it i

rtre Ee   


   
    (21) 

As shown in the previous section, for any utility function u, there exists an economy 
0t t

c


 for 

which the gamma discounting rule (21) yields inefficient discount rates. Two extreme cases 

should be considered. Suppose first that u is CRRA and that growth rates are i.i.d.. In that 

case, it is well-known that the term structure of efficient rates is flat, and that interest rates 

1 ln exp( )r E x       are constant. Because future spot rates are certain, the gamma 

discounting rule is correct, but trivial. The second extreme case arises when assuming that the 

macroeconomic uncertainty is fully resolved instantaneously right after date 0.7 In that case, 

the gamma discounting rule is efficient, and non-trivial. 

Proposition 5: Suppose that the uncertainty affecting growth is fully resolved at date 1  

which shrinks to zero.  Then, the gamma discounting rule is efficient: For all 0 :t 

0 0 .W
t tr r   

Proof: See the Appendix. 

The intuition of this result can be derived in three steps. First, observe that when the 

uncertainty is immediately resolved at date 1 , the present value 
1 tPV  has a coherent 

economic meaning. The second step is to recognize that although this present value is 

                                                 
7 This case formed the reference model of the first version of this paper. 
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uncertain at date 0, this uncertain benefit comes to increase consumption 
1 0c c  , which is 

certain. So, there is no self-insurance benefit for 
1 tPV   in this case. Third, remember that risk 

aversion is a second-order effect in the expected utility model (Segal and Spivak (1990)).8 

This implies that using the expectation of the present value 0 tPV   to value a sure benefit at 

date t is efficient.  

The following two examples illustrate the difference between the term structures of the 

efficient discount rates and of the gamma discount rates. The first example is inspired from 

Weitzman (1998, 2001, 2010), and from Proposition 5. But contrary to this proposition, we 

assume that the resolution of the uncertainty is resolved only in 30 years, not today. As in 

Weitzman (2001, 2010), we calibrate the model in such a way that the future spot interest rate 

has a gamma distribution. 

Example 2: Suppose that u is CRRA with relative risk aversion  . We assume that each 

period lasts 30 years. Suppose also that the uncertainty is fully revealed at date 1 (so, in 30 

years), with a constant growth rate forever. This means that, conditional to 1x x , x is equal 

to x almost surely. This is an extreme form of PQD, yielding a decreasing term structure of 

efficient discount rates. This implies that the future spot rate 1r    conditional to 1x  is just 

equal to 1x . Let us calibrate this model by assuming that the uncertainty affecting growth 

rate 1x  at date 0 is governed by a gamma density function: 

 
1 /

1
1 1( ; , )    for all 0,

( )

x b
a

a

e
f x a b x x

b a


 


 (22) 

where a and b are two positive constant. Its mean and variance equal respectively 

1Ex ab   and 2 2
1( ) .Var x ab   We show in the Appendix that 

 0

ln(1 )
,t

a bt
r

t





  (23) 

and 

                                                 
8 This means that, when background consumption is certain, the certainty equivalent of payoff x  equals 

2( )Ex o  , with 2

0
lim ( ) / 0o  


 .   
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 2 2

0

ln 1 ( 1)
.W

t

a bt b t
r

t

 


  
  (24) 

We calibrate the model with 2   and 1   , so that consumption doubles every thirty 

years in expectation. This corresponds to 1a b  . In Table 1, we computed the annualized 

discount rates for different discount rates by using equations (23) and (24).  

maturity 
Efficient discounting 

0 tr   
Gamma discounting 

0
W

tr   

   
30 years (t=1) 3.66% 3.66% 

60 years (t=2) 2.68% 3.66% 

90 years (t=3) 2.16% 3.01% 

120 years (t=4) 1.83% 2.54% 

150 years (t=5) 1.60% 2.20% 

180 years (t=6) 1.42% 1.94% 

Table 1: Discount rates for the model presented in Example 2, 
with 2   and 1a b  . 

 

This example confirms the findings of the previous section. Because the shock on future 

growth rates is permanent, which is a strong form of PQD, the term structure of efficient 

discount rates is decreasing, and the gamma discounting rule overestimates them. This means 

that Weitzman’ recommendation is short-termist. But this example shares with Gollier and 

Weitzman (2010) and Weitzman (2010) the unrealistic feature to assume that the uncertainty 

is fully resolved in the medium term. In our last example, we consider a case in which the 

uncertainty is smoothly resolved over time. 

Example 3: Let us assume as before that the representative agent is CRRA with relative risk 

aversion 0  . We assume that growth rates 1ln /x c c     per period are i.i.d. normal  with 

mean   and variance 2 . At date 0, the true value of  is uncertain. The beliefs of the 

representative agent about the mean growth rate are represented by a normal distribution with 

mean  and variance 2
0 , which measures the ambiguity prevailing at that time. Of course, 

the agent will learn the true value of  over time by observing realized growth rates. 

Technical details are described in the Appendix. Gollier (2008) showed that the efficient 

discount rates in such an economy are characterized as follows: 
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  2 2 2
0 00.5 .tr t        (25) 

The term structure of efficient discount rates is linearly decreasing. Computing the term 

structure of the gamma discount rates is more complex. Conditional to the realization of past 

growth rates 1( ,..., )x x , the spot interest rate at date  is given by 

 
2 2 2 2

2 20 0
1 1 2 2 2 2

0 0

( 1)
,..., 0.5 ,

m
r x x 
  

      
    

  
 

 
 (26) 

where 1( ... ) /m x x     is the mean growth rate from 0 to  . It is shown in the Appendix 

that the gamma discounting rule yields  

 2
0 0.5 ,W

t tr v     (27) 

where t is defined in the Appendix, with 2 2
1 2 0v v     . In Figure 1, we draw the term 

structures of 0 tr   and of 0
W

tr  in the case of 2  , 2%  , 4%  , 0 1%  . We see again 

that gamma discounting is short-termist. For example, Weitzman would recommend using 

0 100 2.51%Wr    in such an economy, but the efficient discount rate is only 0 100 1.68%r   . 

 

Figure 1: Term structures of 0 tr   and of 0
W

tr  in with CRRA preferences ( 2  ) and 
2

1 2, ,... . . . ( , )x x i i d N   , 2
0( , )N   . We assume that 2%  , 4%  , and 0 1%  . 

 

5. Related literature 

Gollier (2004) was the first to criticize gamma discounting for its weak economic foundation. 

Gamma discounting is based on the idea that when interest rates are uncertain, one should use 
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the expected net present value (NPV) criterion to evaluate safe projects. Gollier showed that 

the same weak foundation offers an alternative criterion based on the expected net future 

value (NFV), yielding discount rates 0
G

tR   such that 

 
1

1 10 0
( )

.
n

G
i i i it i

rtRe Ee   


   
  (28) 

Under the same beliefs as those considered by Weitzman (1998, 2001), which are similar to 

example 2 above, it is easy to show that the term structures of 0
G

tR   and 0
W

tR   are respectively 

increasing and decreasing and they converge asymptotically respectively to the largest and to 

the smallest possible interest rate. Gollier concluded that “Weitzman and I cannot be both 

right. In fact, to tell the truth, I believe that we are both wrong, because our criteria are 

arbitrary”.9 This remark has generated an intense debate about which rule should be applied in 

practice. This is illustrated by the titles of some recent papers on this topic: “Yes, we should 

discount the far-distant future at its lowest possible rate: A resolution of the Weitzman-Gollier 

puzzle” (Freeman (2010)); “The Weitzman-Gollier puzzle is not a paradox but a mistake” 

(Szekeres (2013)); and  “Disentangling the Weitzman and the Gollier effect” (Traeger 

(2013)).  This literature did not converge to a consensus in the profession about the efficiency 

of decreasing term structure of discount rates.  

Pazner and Razin (1975) have been the first to show that the expected NPV and NFV 

approaches diverge in their recommendation under risk neutrality, but these authors did not 

attempt to solve the puzzle. Hepburn and Groom (2007) generalized their analysis by showing 

that one can consider other evaluation dates than 0 (for NPV) or t (for NFV), each choice 

yielding a different term structure.  

These authors do not link interest rate risks to risk on consumption, which is necessary to 

solve the puzzle. Buchholz and Schumacher (2008) introduced risk aversion into the debate 

and defined the certainty equivalent discount rate accordingly, but the corresponding decision 

rule remains sensitive to the date at which the net benefit is consumed. This is because they 

did not recognize that the discount rate is linked to the growth of consumption through an 

equilibrium condition on the credit market.  

Freeman (2010) integrated this crucial observation into his analysis. He examined a Lucas 

tree economy as in this paper, but his analysis is restricted to growth processes with full 

                                                 
9 The fact that 

0

G

t
r


defined by equation (28) is inefficient is obvious from comparing this equation to (19). 
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resolution of uncertainty at date 0, and with a flat term structure contingent to the signal. 

Considering the special case of Kreps-Porteus preferences with risk neutrality, he concluded 

that the expected NPV criterion correctly identifies the attractiveness of social initiatives. 

However, it is hard to accept the assumption of risk neutrality, in particular in the context of 

extra-long maturities that is typically considered in this literature on gamma discounting.  

Gollier and Weitzman (2010) and Weitzman (2010) showed that the expected NPV and NFV 

approaches can be reconciled through the addition of risk premia to the NPV and the NFV 

portfolios. Whereas this paper takes the stochastic growth of consumption as exogenous and 

derives interest rates from equilibrium conditions, Gollier and Weitzman (2010) and 

Weitzman (2010) take stochastic interest rates as given. As in our Proposition 5, they also 

assume unrealistically that the uncertainty about the future is fully resolved right after the 

investment decision.  It implies that they optimally react to the signal at date 0 by adapting 

their consumption level to changes in their expectation about future interest rates. They 

showed that gamma discounting and the expected NPV rule is efficient if and only if the 

representative agent has a logarithmic utility function, which is a striking difference with what 

we obtain in this paper. The logarithmic case is the only one in which 0c  is optimally 

independent to information about future interest rate. In the other cases, 0c  is not constant, 

and the second-order risk aversion argument cannot be invoked to get a result as in 

Proposition 5. Traeger (2013) extended this analysis to the case of risky projects. He showed 

that measuring the risk-adjusted expected NPV of risky projects combines a “Weitzman 

effect” and a “Gollier effect” coming respectively from the correlated market interest rates 

and from the correlated rates of return of the project under scrutiny.  

It is useful to link this literature to the more traditional asset pricing theory. This link comes 

from rule (18), which is the classical CCAPM risk free asset pricing rule. Gollier (2012) 

showed that this equation generates a decreasing term structure of discount rates when future 

spot growth rates of consumption are PQD, and he illustrated this result with different 

stochastic growth processes exhibiting some persistence of shocks.  

Newell and Pizer (2003), Groom, Koundouri, Panopoulou and Pantelidis (2007), and Gollier, 

Koundouri and Pantelidis (2008) have calibrated the expected net present value rule by using 

time series data on interest rates. They estimated various stochastic processes, many of them 

yielding a sizeable degree of persistence in the dynamics of these rates, and therefore a 

strongly decreasing term structure of gamma discounting rates 0
W

tr  . 
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Gamma discounting is remotely related to the fundamental theorem of finance (Rubinstein 

(1976), Ross (1978)) which states that any no-arbitrage pricing rule can be represented by a 

price kernel (or stochastic discount factor) tm such that any asset with a payoff tF  occurring 

at date t has a price equaling t tEm F . If tF  is certain, and if we use a representation 

exp( )tm rt   for the price kernel, then we formally have that the value of the safe asset is 

equal to tF  discounted at rate 0
W

tr  . But this potential justification of gamma discounting is 

mostly semantic, for two reasons. First, this approach requires that the price kernel be an 

exponential function of time, with a “stochastic discount rate” r being independent of time. 

Second, and more importantly, it is misleading to identify r as an “interest rate”, as done for 

example in Weitzman (2001)10 and in subsequent works aimed at estimating gamma 

discounting rates from data on interest rates. Such an identification would be correct only if  

the price ( )tm s of the Arrow-Debreu security that delivers one dollar at date t in growth 

scenario s would be equal to the present value of that dollar discounted at the compounded 

interest rate observed in that scenario. As seen in this paper, this hypothesis is false when the 

uncertainty is resolved only gradually. 

We do not cover here the literature associated to alternative interpretations of the source of 

uncertainty affecting future interest rates. In Jouini, Marin and Napp (2010) and Freeman and 

Groom (2012), economic agents agree to disagree about their expectations relative to 

consumption growth. In Gollier and Zeckhauser (2005) and Heal and Millner (2013), 

consumers have heterogeneous time preferences. Under some conditions, the term structure of 

the rate of impatience of the representative consumer is decreasing with time, as in gamma 

discounting. In both cases, the problem examined by Weitzman (1998, 2001) is interpreted as 

an aggregation problem of beliefs or preferences.  

 

6. Conclusion 

Following Weitzman (1998, 2001), several countries have decided -- or are considering the 

possibility – to implement gamma discounting to evaluate public policies. But we have shown 

                                                 
10 Weitzman (2001) calibrated the uncertainty on r by the following survey question: “What real interest rate do 
you think should be used to discount over time the (expected) benefits and (expected) costs of projects being 
proposed to mitigate the possible effects of global climate change?” 
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here that, when future interest rates are uncertain, there is no social preference that generically 

supports gamma discounting and its underlying criterion, the expected net present value rule.  

The beauty of gamma discounting is that the term structure of discount rates can be derived 

from the sole distribution of future interest rates. Using a standard Lucas tree economy, we 

have shown that it is not possible to characterize the term structure of efficient discount rates 

with just that information. The distribution of future interest rates is not a sufficient statistics 

for recovering the term structure of efficient discount rates today.  If future interest rates are 

uncertain, transferring the flow of net benefits to the future by investing them in short-lived 

assets yields a reinvestment risk whose evaluation necessitates information on the underlying 

growth process. Moreover, the alternative approach consisting in transferring the flow of net 

benefits to the present is not feasible with a sequence of short-lived assets with uncertain 

returns. In other words, the notion of a net present value with uncertain interest rates is 

particularly hard to interpret.  We have shown that this can be solved through a sequence of 

risk-adjusted net present valuations within each subperiod in which this makes sense. The 

efficient discount rates obtained through this method also require information of the joint 

distribution of future interest rates and of future consumption levels. 

We have also shown that the gamma discounting rule tends to overestimate the efficient 

discount rates when shocks on consumption are persistent. The intuition is that future 

consumption is positively correlated with future spot interest rates in that case, which implies 

that present values have a negative CCAPM beta. The risk neutrality assumption implicit in 

gamma discounting tends to undervalue sure future benefits. Thus gamma discounting is short 

termist, with discount rates that are too large. The bottom line of this paper is that gamma 

discounting is not supported by standard economic principles.  

However, Weitzman (2001) is mostly right, but for the wrong reasons. Indeed, we have 

shown in this paper that there are good reasons to recommend using a decreasing term 

structure of discount rates. Bansal and Yaron (2004) and many others have shown that shocks 

to the growth rate of consumption are persistent. This tends to magnify the long run risk faced 

by future generations. Under prudence, this should induce us to invest more in projects 

generating safe benefits in the distant future. This should be done by using discount rates with 

a decreasing term structure. 
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Appendix  

Technical details for Example 1 

We use the following well-known Lemma. 

Lemma 1: If 2( , )y yy N   , then 2 2exp( ) exp( 0.5 )y yE Ay A A   .  

We normalize 0 1c  , so that 2
1ln ( , )c N   , 2

2ln (2 , 2 (1 ))c N    and  2 1 1ln /c c c  is 

normal with mean 1(1 ) ln c     and variance 2 2(1 )  . This implies from equations (2)

and (3) that 

 
2 2

0 1 1ln 0.5r ce Ee e         (29) 

 
2 2
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This implies that 
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Proof of Proposition 4 

Equation (18) is a special case of (16) when 0  . We now show that equations (18) and (19) 

are equivalent. By the law of iterated expectations, we have that equation (19) can be 

rewritten as follows: 
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Taking again the expectation conditional to information at date 1t   yields in the same way 
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Proceeding sequentially in the same backward way, we eventually obtain 
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   (35) 

which is equivalent to equation (18). Finally, we show that equation (20) is also equivalent to 

this equation. Indeed, by definition (17) of future rates tR , equation (20) can be rewritten as 

 
1

1 110 0
1( )

0
0

'( ) '( )
,

'( ) '( )

n
i i ii it i

i

nRtr t

i

Eu c Eu c
e e

Eu c u c
   




   

 


    (36) 

which is equation (18).   

 

Proof of Proposition 5 

Without loss of generality, let us decompose [0, ]t into two subperiods 1[0, ]  and 1[ , ]t . Let s  

denote the signal obtained at 1 . Conditional to s, the consumption path 
0t t

c


is deterministic, 

and denoted 
0ts t

c


. We have that 
1 1

1
0 1 0ln '( ) / '( )r Eu c u c  
   . Because the uncertainty is 

fully resolved at date 1 , we also have that 
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1
1( ) ( ) ln '( ) / '( )t ts sr s t u c u c  

    . It implies 

that 
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When 1  tends to zero, 
1

c  tends to 0c with probability 1, and the above equation can be 

rewritten as  
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From equation (18), this implies that 0 0
W

t tr r  .   

 

Technical details for Example 2 

From equation (18), we have that11 
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This is equivalent to equation (23). Now observe that because r x , the future spot rate also 

has a gamma distribution with parameters a and b . The gamma discounting approach yields 
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This is equivalent to equation (24). 

 

Technical details for Example 3 

In this example, we have that 
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Under '( )u c c  , Lemma 1 implies that 
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We also know that this implies that 
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and 

 
2 2 2 2

20 0
1 1 2 2 2 2

0 0

( 1)
,..., , ,t

t t

m t t
x x x N

t t

   
   

   
   

  (44) 

Lemma 1 implies that 
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with 0 0m   and 1( ... ) /m x x     . We have that 
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Now, observe that tM is normal with mean t  and variance 2 2
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