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Abstract

We propose an explanation of the reluctance of mobile operators to
move toward low levels of mobile to mobile (MTM) termination rates,
that is based on the heterogeneity of calling patterns and demand elas-
ticities among users of the service. We show that when the elasticity
of participation and the intensity of usage are negatively correlated,
the following conclusions hold: i) The profit maximizing MTM recip-
rocal termination rate is above the marginal termination cost; ii) The
welfare maximizing termination rate is also above cost, but below the
former. We extend the analysis to on-net / off-net pricing, and also
discuss the impact of fixed to mobile termination.

1 Introduction

In this paper we revisit the analysis of the effect of mobile-to-mobile (MTM)
call termination rates on the market for mobile telephony by considering the
effect of heterogeneous demands for calls and subscriptions. We show that
the following conclusions hold when those who call less have also a more
elastic demand for subscription:

i) The profit maximizing MTM reciprocal termination rate is above the
marginal termination cost;

ii) The welfare maximizing MTM reciprocal termination rate is also above
cost, but below the profit maximizing level.

∗We thank Stefan Behringer, Doh-Shin Jeon and seminar participants at IESE
(Barcelona), Leuven, ARCEP, CREST-LEI, Ecole Polytechnique and at ESWC (Shang-
hai) for helpful comments.
†Toulouse School of Economics (GREMAQ and IDEI).
‡Toulouse School of Economics (GREMAQ and IDEI).
§Toulouse School of Economics (GREMAQ and IDEI).
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The analysis and the conclusions are consistent with casual observation of
the European markets for mobile telephony. A first feature of these markets is
the so-called “calling party pays” (CPP) principle, according to which users
do not pay for receiving calls; instead, the operator of the calling party pays
a termination rate to the network that completes the call. A second feature
is that operators offer complex non-linear tariffs; they also offer handset
subsidies to attract new customers or keep their current customers. Over the
years, tariffs differentiating on-net calls (within the operator’s network) from
off-net calls (terminating on another network) have developed, although in
different ways across countries.1 As a first approximation, we may thus view
Europeans markets as markets with CPP and non-linear tariffs, and some
but limited extent of on-net / off-net pricing.

Under CPP, the market is perceived to provide little discipline on the level
of termination rates, since the customer of a given network is not necessarily
sensitive to the price paid by those who call him. While there seems to be
a general consensus that there is scope for some form of regulation, there
is more disagreement on the nature of this regulation and on the adequate
level of termination rates. Currently rates are regulated at the national level
and, despite the European Commission’s attempt in 2002 at harmonizing the
practices by defining rules for the regulation of telecommunication markets,
as of 2010 there is still a large disparity among the regulated levels. Yet
European regulators have steadily reduced termination rates over the last
ten years, and mobile operators have consistently resisted this move, arguing
that reducing termination rates would impede the development of the market
to the detriment of mobile customers.

Starting with the work of Laffont, Rey and Tirole (1998a,b) and Arm-
strong (1998), researchers have developed a body of theoretical work mod-
elling the competition between mobile operators and analyzing the determi-
nation of termination rates.2 One key to understanding the effect of termi-
nation on retail prices is the so-called “waterbed” effect:3 the profit that a
customer may generate on fixed-to-mobile (FTM) or mobile-to-mobile termi-
nation4 will be at least partially competed away through retail competition,
since mobile operators will then fight more fiercely to attract customers. This

1For instance, the practice is common in UK since the 90s, while it started recently
in France. Moreover, some operators simply charge different prices for (all) off-net calls,
while others propose ”friends and family” packages (that is, a special low price for calls
directed to a small set of numbers, chosen by the subscriber) restricted to on-net numbers.

2See Hoernig (2010) for a recent and flexible model of the mobile sector.
3The term was coined by Paul Geroski.
4While the term is usually used for FTM termination, the same insight applies to MTM

termination.
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can take the form of reduced subscription fees but could also translate into
increased advertising, larger handset subsidies or reduced fees on particular
services.5 This has recently been empirically studied by Genakos and Valletti
(2007), who find a significant although not full waterbed effect. While the
existing literature predicts that a partial waterbed effect leads the operators
to favour large FTM termination rates, this is not so for MTM termina-
tion. This is partly due to the fact that, in the latter case, termination
revenues operate transfers among mobile operators rather than from other
networks, and thus affect both calls emitted and received. As pointed out
recently by Armstrong and Wright (2008), one of the main conclusions of
the literature is that network operators should collectively favour low MTM
termination rates, which is somewhat at odds with the observation that, in
practice, mobile operators resist reducing MTM rates. To reconcile theory
and practice, Armstrong and Wright (2009) stress that arbitrage possibili-
ties between fixed and mobile origination tend to link FTM to MTM rates,
so that network operators may favour high rates if FTM revenues are large
enough and the waterbed effect is only partial; they also contrast the case of
bilateral negotiations over (reciprocal) termination rates with the situation
where each operator unilaterally sets its own rates. In this paper we propose
an alternative explanation for above-cost MTM rates.

We start by noting that there is considerable heterogeneity in usage pat-
terns among users. This heterogeneity is reflected to some extent in the large
variety of post-pay contracts, as well as in the differences between pre-pay
and post-pay users.6 It is a source of traffic imbalance at the customer level,
since some customers call more than they receive while others receive more
than they call. This makes customers more or less attractive for an operator,
to an extent that depends on termination rates. The heterogeneity of calling
patterns has been studied by Dessein (2003) and Hahn (2004) in contexts
where total subscription demand is inelastic; they show that the waterbed
effect remains full and, as a result, the profit remains unaffected by the level
of the termination rate. However, as mentioned by Dessein (2003), it is
not clear how this conclusion extends to situations where the subscription
demand is elastic. We follow this route by allowing for elastic demand for
subscription.7

5See Schiff (2008).
6Post-pay contracts include a monthly subscription fee as well as usage fees; pre-pay

(or pay-as-you-go) contracts allow instead customers to buy minutes of calls in advance.
It is worth noting here that operators are willing to maintain receiving services on pre-pay
contracts even after the contracted volume of calls is exhausted.

7Dessein (2004) shows that the profit neutrality results break if the intensity of com-
petition differs for different types of users. Poletti and Wright (2004) reach a similar con-
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Our model is based on the observation that the willingness to pay for
subscription is related to the volume of calls. Customers with very large
volumes of calls are infra-marginal customers, who may switch between op-
erators but do not renounce to the service when prices increase; marginal
customers are instead those who also call less. We thus introduce two types
of customers: heavy users and light users; the latter not only call less often,
but their demand for subscription is moreover more elastic.

As an illustration, we use the change in data issued by the French regula-
tor during the year 2005 to obtain some idea of the difference between pre-pay
and post-pay clients. France moved away from bill-and-keep for MTM termi-
nation in January 2005,8 which triggered a change in the statistics collected
by the Observatoire des mobiles. During the first semester, volumes included
the minutes of calls emitted, along with FTM termination and roaming. Af-
terwards, the volumes also included the number of minutes of off-net MTM
termination. Using these data, for each quarter of 2005 we computed average
volumes, for pre-pay and post-pay customers; we present the results in the
following Table:

Volume per subscriber 2005 (mn) Q1 Q2 Q3 Q4
Post-pay 786 798 837 867
Pre-pay 156 159 205 201

Table 1

The Table confirms that pre-pay customers call much less than post-pay
ones (see e.g. the first two quarters). Assuming that usage is relatively
stable across quarters, the difference between the third and second quarters
provides moreover a rough estimate of off-net incoming calls from mobile.
This amounts to 39 mn for post-pay customers and 47 mn for pre-pay clients.
Therefore, adding off-net MTM termination raises volume by 35% for pre-
pay and only 5% for post-pay; this confirms that, compared with post-pay
customers, pre-pay customers tend to receive relatively more than they call.9

Formally, we use the framework of Laffont, Rey and Tirole (1998a) (here-
after LRT), in which we introduce light users; in particular, as in LRT and
Armstrong (1998), we assume full participation for heavy users (that is, their
aggregate demand for subscription is inelastic). To keep things simple, in the
main part of the paper we assume that light users actually only receive calls;
we then show that the analysis is robust when light users also call. We also

clusion by introducing a participation constraint on usage. Both papers however maintain
the assumption of a fixed participation.

8The decision was to align MTM and FTM termination rate.
9Note that this 5% figure is probably an over-estimate since there was an positive trend

on post-pay during this period.
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consider first the case of explicit (third-degree) price discrimination, where
the operators can thus offer different contracts for heavy and light users,
and show later that the analysis carries over to the case of implicit (second-
degree) price discrimination through a menu of tariffs (pre-pay and post-pay
contracts, say).

Operators offer a menu of contracts, each including a subscription fee and
a unit price for calls. We first focus on MTM termination and on customer
prices that are uniform across networks. We then consider termination-based
price discrimination, referred to simply as on-net pricing, by allowing differ-
ent prices for off-net and on-net calls. We finally introduce FTM termination.
In each situation, we analyze the impact of (reciprocal) termination rates on
subscription and usage prices, as well as on profits and welfare. In equilib-
rium, usage prices are equal to perceived costs and there is no profit from
origination; network operators’ profit is thus driven by termination revenue
(or deficit) and by subscription fees. We identify two new effects:

Raising termination revenue weakens competition for heavy users: Intro-
ducing light users reduces competition for heavy ones when the termination
charge is above cost. The reason is that the operators then obtain more
profit from terminating off-net calls than on-net calls. Therefore, losing a
heavy user to the competitor raises the termination profit on light users –
without generating an equivalent cost, since light users call less than they
are called.

Raising termination revenue intensifies competition for light users: This
is a variant of the waterbed effect. Since light users generate a positive termi-
nation balance, they become more profitable when the termination markup
increases, hence a reduction in the equilibrium price. This waterbed effect
is however modified here, due to the fact that losing light users to the com-
peting network generates a termination deficit, since light users are mainly
receivers. This additional cost further intensifies competition for light users.

We show that, in the absence of on-net pricing, the former effect domi-
nates for profit while the latter dominates for welfare. As a result, both profit
and welfare are maximal for termination rates that are above cost: adopt-
ing a positive termination markup increases welfare because it generates a
market expansion that benefits all customers – in contrast, in the absence of
any scope for demand expansion, welfare would be maximized for cost-based
termination charges. The operators also prefer a positive markup because the
extra revenue from termination by heavy users is not fully competed away
anymore through subscription fees. A conflict arises, however, since network
operators favor excessively high termination rates.

The analysis is more complex with on-net pricing, because the market
then exhibits tariff-mediated network effects: with a positive termination
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markup, the off-net price is above the on-net price; a customer is thus better
off joining a larger network, as a larger proportion of calls will then remain on-
net. As pointed out by Laffont, Rey and Tirole (1998b) and Gans and King
(2001), these network effects intensify competition. While these network
effects mostly concern heavy users, the operators then compete more fiercely
for both heavy and light users. We show that welfare is still maximized for
a termination rate that lies above cost. The conclusion for the operators’
profit depends on the characteristics of the market: the operators prefer a
termination rate above cost to a cost-based termination rate if the size of the
demand from light users is not too small nor too inelastic.

Introducing FTM termination revenues reduces all subscription prices.
While this waterbed effect is stronger for heavy users (because their demand
is inelastic), we show that the overall effect of FTM termination revenue on
prices may actually be larger for either heavy or light users. The reason is that
increasing the subscription fee for light users further weakens the competition
for heavy users, which in turn limits the reduction of their subscription fees.
Finally we show that the network operators collectively favor a positive FTM
rate while they would be indifferent if they were no light users.

The paper is organized as follows. Sections 2 to 4 present the analysis for
the basis model. Section 5 considers on-net pricing. Section 6 extends the
model to allow calls from light users. Section 7 discusses FTM termination
while section 8 concludes.

2 The model

Two mobile operators 1 and 2 compete for heterogenous customers. To keep
the exposition simple, we assume that there are only two categories of users:
heavy users wishing to call as well as to receive calls, and light users who
are only interested in being reached. The case where light users also call is
discussed in section 6.

Providing the service involves a fixed cost per customer, which we allow
to differ across the two categories of users; we denote by f the cost for heavy
users and by f̃ the cost for light users. Each call moreover generates an
origination cost cO of calls and a termination cost cT . The total cost of a call
is therefore c = cO + cT . In the case of an off-net call, the calling network
pays a termination charge a to the receiving network, which is assumed to
be reciprocal and non-negative.10 The terminating network thus receives the
termination markup m ≡ a− cT , while the originating network bears a cost

10Negative termination charges could generate abuses.
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c+m. To study the impact of the access charge on the competition between
the two operators, we consider the following timing:

∙ first, the reciprocal access markup m is set (more on this below);

∙ second, the two operators compete in retail prices.

We moreover assume that the two types of users are sufficiently different
that each network i = 1, 2 can discriminate between them by offering two
contracts: a two-part tariff for heavy users, which consists of a subscription
fee Fi and a unit price for calls pi, and a simple fixed fee F̃i for light users
(together with a high usage price, say). We show later on that the main
insights obtained for such explicit (or third-degree) discrimination extends
to the case of implicit (or second-degree) discrimination.

Networks are differentiated and face symmetric demands. More precisely,
the demand from light users for network i is given by �̃i = D(F̃i, F̃j). We
will assume that demand for network i is bounded, twice continuously differ-
entiable with bounded derivatives, decreasing with its own price11 (D1 < 0)
and increasing with its rival’s price (D2 > 0), and that the aggregate de-
mand, �̃T (F̃ ) ≡ 2D(F̃ , F̃ ), is decreasing in F̃ ; the “replacement ratio”,
(F̃ ) ≡ −D2(F̃ , F̃ )/D1(F̃ , F̃ ), is thus such that 0 ≤ (F̃ ) < 1.12

Heavy users represent a mass 1 and are uniformly distributed on an
Hotelling line of length 1, whereas the networks are located at the two ends
of the segment. Heavy users moreover have a balanced calling pattern and
thus call all subscribers (heavy and light) with equal probability; a volume
of calls q gives them a utility u (q) per subscriber. Assuming that all heavy
users subscribe, so that the total number of subscribers is 1+ �̃T , subscribing
to network i gives a user located at a distance x a net utility given by

u0 + (1 + �̃T ) (u (q)− piq)− Fi −
x

2�
,

where � measures the degree of substitution between the two networks and
u0 denotes the fixed utility from receiving calls. The volume of calls is then
given by

qi = q (pi) ≡ arg max
q≥0
{u (q)− piq} ,

where we assume that q (p) is differentiable. Letting v (pi) ≡ maxq≥0 {u (q)− piq}
denote the surplus so achieved, heavy users’ overall variable surplus from the
service is thus:

wi ≡ (1 + �̃T ) v (pi)− Fi. (1)

11In the following, Di denotes the partial derivative of the demand function D with
respect to it itℎ argument.

12The limit case  = 1 would correspond to the case of full (fixed) participation.
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Operator i’s market share among heavy users is then given by:

�i =
1

2
+ � (wi − wj) . (2)

Departing from cost-based termination charges (i.e., m ∕= 0) may intro-
duce non-concavity problems. However, building on the analysis of LRT, it
can be checked that a unique symmetric equilibrium indeed exists as long
as the termination markup is not too large and/or networks are sufficiently
differentiated (i.e., � and  (.) small). Throughout the paper, we will assume
the following:

Assumption A

1. Heavy users’ utility from receiving calls, u0, is large enough to ensure that
their entire segment is always covered;

2. v (0) and q (0) are bounded and the two networks are sufficiently differen-
tiated (i.e., � and  (.) small enough) that there always exists a unique,
pure strategy equilibrium, in which the two networks moreover share
the market equally.13

3 Retail market equilibrium

Assumption A ensures the existence of a unique equilibrium for a given access
markup m, and this equilibrium is moreover characterized by the first-order

conditions. For given prices
(
pi, Fi, F̃i

)
i=1,2

, and given subscription demands

from heavy and light users (�i, �̃i, )i=1,2, network i’s profit is equal to, for
i ∕= j = 1, 2:

Πi = �i [(1 + �̃T ) (pi − c) q (pi)− (�j + �̃j)mq (pi) + Fi − f ]

+ (�i + �̃i)�jmq (pj) + �̃i

(
F̃i − f̃

)
.

A first and by now standard step consists in optimizing with respect to the
usage price pi, while adjusting the fee Fi so as to keep constant the variable

13Laffont, Rey and Tirole (1998a) show that, in the case of homogenous users, a sym-
metric shared-market equilibrium exists when m and/or � is small enough.The argument
can easily be extended here (as in Dessein (2003), who considers the case of implicit dis-
crimination among heterogenous users); in particular, the bound on v (0) puts a limit on
non-concave terms in profit expressions for m > 0, while the restriction to non-negative
termination charges puts a similar limit for m < 0. Lopez and Rey (2008) provide a
detailed analysis of the existence of shared-market and cornered market equilibria.
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surplus wi = (1 + �̃T ) v (pi)−Fi. Indeed a marginal change in prices dpi and
dFi = − (1 + �̃T ) q (pi) dpi allows the firm to maintain all the market shares
constant and yields a marginal gain:

∂Πi

∂pi

∣∣∣∣
wi,F̃i

= �i [(1 + �̃T ) ((pi − c) q′ (pi) + q (pi))− (�j + �̃j)mq
′ (pi)− (1 + �̃T ) q (pi)]

= �iq
′ (pi) [(1 + �̃T ) (pi − c)− (�j + �̃j)m] ,

which, evaluated at a symmetric equilibrium (�i = �j = 1/2, �̃j = �̃T/2),
leads to:

p1 = p2 = p∗ ≡ c+
m

2
. (3)

As in the previous literature, the networks thus price usage at the average
perceived marginal cost. Given these equilibrium prices, network i’s profit is
equal to:

Πi = �i

[
(�i + �̃i)

mq∗

2
− (�j + �̃j)

mq∗

2
+ Fi − f

]
+ (�i + �̃i)�jmq

∗ + �̃i

(
F̃i − f̃

)
,

where q∗ ≡ q (p∗) denotes the equilibrium volume of calls per subscriber and:

�i = 1− �j =
1

2
− � (Fi − Fj) .

Differentiating with respect to the subscription fee Fi yields, at a symmetric
equilibrium:

∂Πi

∂Fi

∣∣∣∣
F1=F2=F,�̃1=�̃2=

�̃T
2
,

= −� (F − f) +
1

2
[−�mq∗ + 1] +

(
−�1

2
+ �

1 + �̃T
2

)
mq∗

=
1

2
− � (F − f) + � (�̃T − 1)

mq∗

2
.

Therefore, the equilibrium fixed fee F ∗ is given by

F ∗ = f +
1

2�
+ (�̃T − 1)

mq∗

2
, (4)

and heavy users’ net variable surplus is equal to:

(1 + �̃T ) v (p∗)− f − 1

2�
− (�̃T − 1)

mq∗

2
.

Condition (4) is similar to that obtained by Laffont, Rey and Tirole
(1998a), except for the term in �̃T . To understand this condition, consider
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first the revenues earned by network i on the calls made or received by a
heavy user. If the user subscribes to network i, his own calls generate no
revenue since the usage price reflects the average variable cost, taking into
account the termination markup paid on the proportion of off-net calls; the
calls received from the same network generate however a retail revenue equal
to �i (p

∗ − c) q∗ = mq∗/4, while the calls received from the rival network
generate an access revenue equal to �jmq

∗ = mq∗/2. If the user subscribes
instead to network j, his calls to network i’s heavy users generate a termi-
nation revenue of �imq

∗ = mq∗/2, while the calls he receives from network
i generate a net revenue �i (p

∗ − c−m) q∗ = −mq∗/4, due to the difference
between the price and the cost of an off-net call. On the whole, attracting
the user generates a net gain equal to mq∗/2, as in Laffont, Rey and Tirole
(1998a), and the fixed fee is reduced by this amount.

The existence of light users mitigates this first impact. While the calls
placed by network i’s subscribers to light users still generate no revenue, calls
from network j’s subscribers generate an access revenue equal to �̃imq

∗ =
�̃Tmq

∗/2. Losing a heavy user to the rival thus generates an additional net
gain of �̃Tmq

∗/2, which is reflected in the equilibrium fixed fees.
Conditions (3) and (4) characterize the retail equilibrium prices for heavy

users, for a given mass of light users. Setting heavy users’ prices to their
equilibrium values (which yields �1 = �2 = 1/2), network i’s profit becomes:

Πi =
1

2

[(
1

2
+ �̃i

)
mq∗

2
−
(

1

2
+ �̃j

)
mq∗

2
+ F ∗ − f

]
+

(
1

2
+ �̃i

)
1

2
mq∗ + �̃i(F̃i − f̃)

=
F ∗ − f

2
+ (1 + 3�̃i − �̃j)

mq∗

4
+ �̃i(F̃i − f̃).

Optimizing this profit with respect to F̃i amounts to maximizing

G
(
F̃i, F̃j

)
≡ (F̃i − C)D(F̃i, F̃j)− ĈD(F̃j, F̃i),

where

C ≡ f̃ − 3mq∗

4
and Ĉ ≡ mq∗

4
.

C represents the direct opportunity cost of attracting additional light users,
taking into account that each new subscriber generates a retail revenue
�i (pi − c) q (pi) = mq∗

4
from on-net calls and a termination revenue �jmq (pj) =

mq∗

2
from incoming off-net calls. Ĉ represents the indirect opportunity cost

generated by the rival’s customers and corresponds to the termination deficit
�i (pi − c−m) q (pi) = −mq∗

4
.
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We will assume that the corresponding game is well-behaved, namely:

Assumption B

1. The game with payoff functions G(F̃1, F̃2) and G(F̃2, F̃1) has a unique
equilibrium, F̃1 = F̃2 = F̃ e(C, Ĉ), which is symmetric, continuously
differentiable and the unique solution to the first-order condition:

F̃ e − C + 
(
F̃ e
)
Ĉ

F̃ e
=

1

"(F̃ e)
, (5)

where "(F̃ ) ≡ −F̃D1(F̃ , F̃ )/D(F̃ , F̃ ) denotes the own price elasticity
of the demand from light users.

2. This equilibrium price verifies

0 <
∂F̃ e

∂C
≤ 1,

∂F̃ e

∂Ĉ
≤ 0 <

∂F̃ e

∂C
+
∂F̃ e

∂Ĉ
.

Assumption B.1 simply ensures that first-order conditions uniquely char-
acterize a unique, symmetric equilibrium. The first condition in Assumption
B.2 is fairly reasonable and simply supposes that an increase in the direct
cost of the operators is at least partially passed through to users.14 The sec-
ond condition states that an increase in the indirect cost attached to rival’s
customers results instead in lower prices, although this effect is less important
than the impact of direct costs.

Under Assumption B.1, the equilibrium is unique, symmetric, and char-
acterized by the first-order condition:

F̃ ∗ − (f̃ − 3+(F̃ ∗)
4

mq∗)

F̃ ∗
=

1

"(F̃ ∗)
. (6)

4 Choosing the termination rate

Let us now derive the private and social optimal values for the termination
markup m. The equilibrium profit of each operator is equal to:

Π∗ =
1

4�
+
�̃∗T
2

(
F̃ ∗ − f̃ +mq∗

)
, (7)

14In standard linear models with inelastic demands, there is full pass-through, although
this is not necessarily implied by the assumption of a fixed demand. Conversely, our
assumption of an elastic demand is not incompatible with a full pass-through.
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where �̃∗T ≡ �̃T (F̃ ∗) denote the equilibrium number of light users. The term
�̃∗Tmq

∗

2
captures two effects. First, the presence of light users reduces the

intensity of competition for heavy users. As a result, the profit on heavy users
increases by �̃Tmq

∗

4
. Moreover, light users generate a termination revenue

�̃Tmq
∗

4
(which is however partially granted back through a reduction in F̃ ∗).

The equilibrium price F̃ ∗ defined by (6) depends on the termination
markup m only through the access revenue

r (m) ≡ mq∗ (p∗) = mq
(
c+

m

2

)
.

We have moreover:

Lemma 1 −1 < ∂F̃ ∗

∂r
< 0.

Proof. Using Assumption B.1, F̃ ∗ = F̃ e
(
f̃ − 3r

4
, r
4

)
. The conclusion then

follows from B.2, since:

∂F̃ ∗

∂r
= −3

4

∂F̃ e

∂C
+

1

4

∂F̃ e

∂Ĉ
,

where

−1 ≤ −∂F̃
e

∂C
<
∂F̃ e

∂Ĉ
≤ 0.

Since F̃ ∗ depends on m solely through the revenue r, the profit Π∗ given
by (7) can also be expressed as a function of r:

Π∗ =
1

4�
+
�̃∗T
2

(
F̃ ∗ − f̃ + r

)
. (8)

Similarly, the equilibrium surplus of the light users, SL, depends only on F̃ ∗

and thus on r. As for the heavy users, their surplus can be written as:

SH = (1 + �̃∗T ) v (p∗)− F ∗ − t

4

= (1 + �̃∗T ) v (p∗) +
r

2
(1− �̃∗T )− 5

8�
.

The termination markup m thus affects this surplus both through the access
revenue r and through the equilibrium price p∗ = c+m/2.

Let us now define the “monopoly” termination markup:

mR ≡ arg max
m

r (m) ,
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which, for the sake of exposition, is assumed to be unique.15 We can note a
useful preliminary result:

Proposition 1 For any m > mR, there exists m̃ < mR that Pareto domi-
nates m.

Proof. Take any candidate m > mR. Since r(0) = 0 and r(.) is continuous
(by the continuity of demand), there exists m̃ ∈ [0,mR] such that r(m̃) =
r(m). Then,

1. The profit is the same for m and m̃ since it only depends on r.

2. The surplus on light users is the same for m and m̃ for the same reason
as above.

3. The surplus of heavy users is higher with m̃ than with m since p∗ is
lower for m̃.

Therefore, any access markup above mR is Pareto dominated by an alter-
native markup below this threshold. We now show that the monopoly rate
maximizes networks’ equilibrium profit:

Proposition 2 The profit maximizing termination markup is positive and
equal to the monopoly termination markup mR.

Proof. The impact of m on total profits is given by:

∂ (2Π∗)

∂m
=

[
�̃′T (F̃ ∗)

∂F̃ ∗

∂r

(
F̃ ∗ − f̃ + r

)
+ �̃∗T (

∂F̃ ∗

∂r
+ 1)

]
∂r

∂m
. (9)

Consider first the case where m ≥ 0 (and thus r ≥ 0). Since ∗ ≡ 
(
F̃ ∗
)
< 1,

(6) then yields:

F̃ ∗ − f̃ + r > F̃ ∗ − f̃ +
3 + ∗

4
r =

D

−D1

(F̃ ∗, F̃ ∗) ≥ 0.

Since �̃′T < 0 and −1 < ∂F̃ ∗

∂r
< 0, the bracket term in (9) is therefore positive.

Hence, in the range m ≥ 0, the profits are maximal for m = mR.

15If the monopoly rate mR is not uniquely defined, the same analysis applies to its
lowest value.
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Now consider the case r < 0. A similar reasoning applies as long F̃ ∗ −
f̃ + r ≥ 0, since ∂r

∂m
= mq′

2
+ q > 0 for m < 0. If instead F̃ ∗− f̃ + r < 0, then

from (8) the equilibrium profit is lower than 1
4�

; m is therefore dominated by

a zero markup (r = 0), for which F̃ ∗− f̃ + r = F̃ ∗− f̃ > 0 from (6), and thus
Π∗ > 1

4�
. Therefore, the profit maximizing termination markup is mR.

Let us now turn to users. Light users’ surplus is of the form SL
(
F̃ ∗, F̃ ∗

)
,

where SL
(
F̃1, F̃2

)
is such that ∂SL

∂F̃i
= −�̃i. Therefore:

∂SL

∂m
=

(
∂SL

∂F̃1

+
∂SL

∂F̃2

)
∂F̃ ∗

∂m
= −�̃∗T

∂F̃ ∗

∂m
.

Thus, as long as m < mR, light users’ surplus increases with the termination
markup. As for heavy users, we show in the appendix that, at m = 0:

∂SH

∂m

∣∣∣∣
m=0

= �̃∗Tv (c)

(
�̃′T
�̃T

(F̃ ∗)
∂F̃ ∗

∂m
+
v′ (c)

v (c)

)
. (10)

Therefore:

Proposition 3 For m small, increasing m raises heavy users’ surplus if light
users’ subscription demand is very elastic or if heavy users’ usage surplus is
not very elastic.

Proof. See the appendix.
The effect on heavy users is two-fold. First, raising the termination

markup reduces the net surplus from usage, which in the presence of light
users is no longer fully compensated by a reduction in subscription fees.
Second, heavy users benefit from the increased participation of light users,
due to intensified competition on this customer segment. The latter effect
dominates if the subscription demand of light users is sufficiently elastic.

Total welfare can be written as follows:

W ∗ =

[
(1 + �̃∗T )

(
v∗ +

mq∗

2

)
− f − t

4

]
+
[
SL(F̃ ∗, F̃ ∗) + �̃∗T

(
F̃ ∗ − f̃

)]
.

(11)
The first term within bracket represents the joint surplus generated with
heavy users, including call termination revenues. The second term represents
the joint surplus generated with light users (excluding termination revenues).
We then obtain:

Proposition 4 The welfare maximizing termination markup is positive and
strictly less than mR.

14



Proof. Using p∗ = c+m/2 and ∂SL

∂m
= −�̃∗T ∂F̃

∗

∂m
, we have:

∂W ∗

∂m
= (1 + �̃∗T )

mq′ (p∗)

4
+

(
v∗ +

mq∗

2
+ F̃ ∗ − f̃

)
�̃′T

(
F̃ ∗
) ∂F̃ ∗
∂m

. (12)

Consider first the case m ≤ 0. We then have �̃′T

(
F̃ ∗
)
∂F̃ ∗

∂m
> 0, since ∂F̃ ∗

∂m
=

∂F̃ ∗

∂r

(
q∗ + mq′(p∗)

2

)
< 0. In addition, (6) yields F̃ ∗ ≥ f̃ − 3+∗

4
mq∗, and thus:

∂W ∗

∂m
≥ (1 + �̃∗T )

mq′ (p∗)

4
+

(
v∗ − 1 + ∗

4
mq∗

)
�̃′T

(
F̃ ∗
) ∂F̃ ∗
∂m

.

It follows that ∂W ∗

∂m
is positive for m ≤ 0. From Proposition 1, the socially

optimal termination markup thus lies in the range
]
0,mR

]
. To conclude the

proof, it suffices to note that, at m = mR (> 0), ∂F̃ ∗

∂m
= ∂F̃ ∗

∂r
∂r
∂m

= 0 and thus:

∂W ∗

∂m

∣∣∣∣
m=mR

= (1 + �̃∗T )
mq′

4
< 0.

Therefore, the presence of light users, whose participation is elastic,16

leads to favoring a positive termination markup. Note that the above analysis
puts the same weight on both categories of users. If a regulator wanted to
promote the participation of light users, thus placing a higher weight on
those users, the optimal termination markup would be even higher. Note
moreover that raising the termination charge above cost may benefit here all
categories of agents. In particular, if the participation of light users is quite
elastic, heavy users are better off with a positive markup, which increases
their calling opportunities.

5 On-net Pricing

We now allow networks to set different prices for on-net and off-net calls. We
keep the same notation as before except that pi and p̂i now denote the prices
charged by network i for on-net and off-net calls respectively. Network i’s
profit becomes, for i ∕= j = 1, 2:

Πi = �i [(�i + �̃i) (pi − c) q (pi) + (�j + �̃j) (p̂i − c−m) q (p̂i) + Fi − f ]

+ (�i + �̃i)�jmq (p̂j) + �̃i(F̃i − f̃),

16In the case of a fixed participation (i.e., �T constant), ∂W∗

∂m = (1 + �∗T ) mq
′(p∗)
4 and

thus welfare is maximal for m = 0.
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where:

�i =
1

2
+ �(wi − wj),

wi = (�i + �̃i)v(pi) + (�j + �̃j)v(p̂i)− Fi.

This profit can also be written as a function of wi rather than Fi:

Πi = �i[(�i + �̃i) ((pi − c) q(pi) + v(pi))

(�j + �̃j) ((p̂i − c−m) q (p̂i) + v(p̂i))− wi − f ]

+ (�i + �̃i)�jmq(p̂j) + �̃i(F̃i − f̃)

Differentiating with respect to usage prices pi and p̂i while adjusting the
subscription fee Fi so as to keep constant the net surplus wi (and thus the
market shares) yields:

p1 = p2 = c and p̂1 = p̂2 = p̂ = c+m.

Using the notation q̂ = q(c + m), v = v(c) and v̂ = v(c + m), network i’s
profit can be written as:

Πi = �i(Fi − f) + �j(�i + �̃i)mq̂ + �̃i(F̃i − f̃), (13)

where the market shares can be expressed as a function of the fixed fees:

�i =
1

2
+ �(wi − wj)

=
1

2
+ �[(2�i − 1 + �̃i − �̃j)(v − v̂)− (Fi − Fj)],

and thus:

�i −
1

2
= �

(�̃i − �̃j)(v − v̂)− (Fi − Fj)
1− 2�(v − v̂)

. (14)

Differentiating (13) with respect to Fi then yields, at a symmetric equilib-
rium:

∂Πi

∂Fi

∣∣∣∣
�̃1=�̃2=

�̃T
2
,F1=F2=F ∗∗

=
1

2
− �

1− 2�(v − v̂)

(
F1 − f −

1 + �̃T
2

mq̂ +
mq̂

2

)
,

which leads to:

F1 = F2 = F ∗∗ = f +
1

2�
+ �̃T

mq̂

2
− (v − v̂). (15)

To understand this determination of the equilibrium fees, it is useful to
decompose again the revenues generated by the calls made or received by a

16



heavy user. As in the absence of on-net pricing, the calls made by one of
network 1’s subscribers generate no revenue, since usage prices reflect again
marginal costs, including the termination markup in the case of off-net calls.
As for the calls received, those that originate off-net still generate an access
revenue mq̂

2
, but on-net calls no longer generate any revenue since the price

of these calls now reflect their actual cost. If the user switches to network
2 then his off-net calls generate an access revenue (1 + �̃T ) mq̂

2
but the calls

received from network 1 no longer generate any net revenue, since the price
of off-net calls now also reflects their actual cost. On the whole, the net gain
of attracting this user is reduced by mq

2
compared to the situation without

on-net pricing, which induces an increase in the fixed fee by the same amount.
This first effect is mitigated by a tariff-mediated network effect. As in

LRT (1998b), on-net pricing increases competition between networks: since
attracting an additional user raises the value of a network by v − v̂, net-
works compete more fiercely for subscribers; and the higher the difference
between the utilities generated by on-net and off-net calls, the more intense
the competition and the lower the fixed fee.

On-net pricing thus generates two conflicting effects. On the one hand,
the opportunity cost of losing a heavy user is reduced, since there is less
cross-subsidy between different types of calls; this first effect tends to de-
crease competition. On the other hand, network effects tend to increase
competition. The following proposition shows that, for small termination
markups, the second effect actually dominates and on-net pricing therefore
benefits heavy users:

Proposition 5 For termination rates close to the marginal cost, on-net pric-
ing leads to lower (resp., higher) subscription fees for heavy users when m is
positive (resp., negative).

Proof. The equilibrium fixed fees without and with on-net pricing are re-
spectively defined by (4) and (15). Therefore:

F ∗ − F ∗∗ =
�̃∗T − 1

2
mq∗ − �̃∗∗T

2
mq̂ + v − v̂,

where �̃∗∗T denotes the equilibrium number of users under price discrimina-
tion. At m = 0, there is no difference in prices (since p∗ = p̂ = c) and thus
F ∗∗ = F ∗ and �̃∗∗T = �̃∗T , which implies:

∂(F ∗ − F ∗∗)
∂m

∣∣∣∣
m=0

=
�̃∗T − 1

2
q(c)− �̃∗T

2
q(c) + q(c) =

q(c)

2
> 0.

17



We now characterize the equilibrium subscription price F̃ for light users.
Setting heavy users’ prices to their equilibrium values, network i’s profit
becomes:

Πi = �i(F
∗∗ − f) + �j(�i + �̃i)mq̂ + �̃i(F̃i − f̃), (16)

where F̃1 and F̃2 affect here market shares in both segments: �̃i = D
(
F̃i, F̃j

)
and

�i =
1

2
+
�(�̃i − �̃j)(v − v̂)

1− 2�(v − v̂)
.

Differentiating (16) with respect to F̃i then yields, at a symmetric equilib-
rium:

∂Πi

∂F̃i

∣∣∣∣
F̃1=F̃2=F̃ ∗∗

=
� (v − v̂) (D1 −D2)

1− 2� (v − v̂)

(
F ∗∗ − f − �̃T

mq̂

2

)
+D1

(
mq̂

2
+ F̃ ∗∗ − f̃

)
+
�̃T
2
,

which, using D2 = −D1 and (15), can be rewritten as:

F̃ ∗∗ − (f̃ − (1 + (F̃ ∗∗)) (v − v̂) +mq̂

2
)

F̃ ∗∗
=

1

"(F̃ ∗∗)
. (17)

F̃ ∗∗ satisfies the first-order condition (5) of the duopoly game for C = f̃ −
mq̂+v−v̂

2
and Ĉ = v−v̂

2
; therefore, from Assumption B.1:

F̃ ∗∗ = F̃ e

(
f̃ − mq̂ + v − v̂

2
,
v − v̂

2

)
.

Assumption B.2 then ensures that F̃ ∗∗ decreases with r̂ and increases with
v̂. Therefore, an increase in the termination rate benefits light users at least
as long as it also raises the termination profit. Building on this, we now
characterize the impact of on-net pricing on the price offered to light users:

Proposition 6 For termination rates close to the marginal cost, on-net pric-
ing leads to lower (resp., higher) tariffs for light users when m is positive
(resp., negative).

Proof. In the absence of termination-based price discrimination, the price
for light users satisfies F̃ ∗ = F̃ e(f̃ − 3mq∗

4
, mq

∗

4
). Therefore, F̃ ∗ = F̃ ∗∗(=
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F̃ e
(
f̃ , 0
)

) for m = 0 and:

∂
(
F̃ ∗ − F̃ ∗∗

)
∂m

∣∣∣∣∣∣
m=0

=
∂F̃ e

∂C

(
−3q (c)

4
+ q (c)

)
+
∂F̃ e

∂Ĉ

(
q (c)

4
− q (c)

2

)

=

(
∂F̃ e

∂C
− ∂F̃ e

∂Ĉ

)
q (c)

4
> 0.

On-net pricing thus induces a decrease in the price for light users when
the termination charge is raised above cost. This is again partly driven by
network effects: adding an additional light user renders a network compara-
tively more attractive for heavy users, which encourages networks to compete
more fiercely for light users. In addition, while on-net calls to light users no
longer generate any net revenue, off-net incoming calls still generate an access
revenue equal to mq̂

2
, which contributes again to reduce prices.

Using the same decomposition as before, total welfare now becomes:

W ∗∗ =

[
(1 + �̃∗∗T )

v + v̂ +mq̂

2
− f − t

4

]
+
[
SL(F̃ ∗∗, F̃ ∗∗) + �̃∗∗T

(
F̃ ∗∗ − f̃

)]
.

It is then again socially desirable to raise the termination charge above cost:

Proposition 7 With on-net pricing, the welfare maximizing termination
markup is positive.

Proof. Using ∂SL(F̃ ∗∗,F̃ ∗∗)

∂F̃ ∗∗
= −�̃∗∗T , we have

∂W ∗∗

∂m
= (1 + �̃∗∗T )

mq′ (p̂)

2
+
∂�̃∗∗T
∂m

(
v + v̂ +mq̂

2
+ F̃ ∗∗ − f̃

)
,

where, from (17):

v + v̂ +mq̂

2
+ F̃ ∗∗ − f̃ =

D

−D1

(
F̃ ∗∗, F̃ ∗∗

)
+ v̂ − 

(
F̃ ∗∗
) v − v̂

2
.

Since v̂ ≥ v for m ≤ 0, this implies ∂W ∗∗

∂m
> 0 for m ≤ 0.

Unsurprisingly, the result on profit is more ambiguous. Indeed, while the
competition weakening effect described in the case without on-net pricing is
still present, it is now mitigated by the impact of tariff-mediated network
effects. Total profit can be written as:

2Π∗∗ =

(
1

2�
+
mq̂

2
+ v̂ − v

)
+ �̃∗∗T

(
F̃ ∗∗ − f̃ +mq̂

)
.
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The first term is maximal at some negative value of m, as shown by Gans and
King (2001) and Dessein (2003). The second term is more complex. Still, we
can establish:

Proposition 8 If at m = 0,

�̃∗∗T

(
1− ∗∗

(
1 +

∗∗

2

)
∂F̃ e

∂C
(., .)

)
>

1

2
, (18)

then the profit is increasing with m for m close to zero.

Proof. See the appendix.
The result does not extend easily to larger departures from cost-based

termination charges, due to the impact on the volume of traffic. We can
however extend it when the latter is not too sensitive to usage prices. To get
some intuition, suppose that the individual demand is inelastic:

q (p) =

{
q̄ if p ≤ p̄,
0 if p > p̄,

where p̄ > c and q̄ > 0. Then, as long as c+m < p̄:

2Π∗∗ =
1

2�
− mq̄

2
+ �̃∗∗T

(
F̃ ∗∗ − f̃ +mq̄

)
.

In that case we have:

Corollary 1 If individual usage is inelastic and condition (18) holds for any
m < 0, then the profit maximizing termination charge is above cost.

Proof. See the appendix.
Condition (18) is such that, as long as light users’ participation is elastic

( small) and/or pass-through rate of the duopoly price is not too high

(∂F̃
e

∂C
small), the profit maximizing termination margin is positive when the

population of light users is large enough. Note that, since scaling the demands
�̃i by a multiplicative factor � does not affect the equilibrium prices, the
condition is indeed easier to satisfy when the demand from light users is
large. When for example the operators have a local monopoly over their own
clientele of light users (D2 = 0, which implies  = 0), the profit maximizing
termination markup is positive if the equilibrium proportion of light users
exceeds one third of the total customer base. In contrast, the condition is
unlikely to be satisfied when the participation of light users is quite inelastic
( close to 1) and/or the pass-through rate is large (∂F̃

e

∂C
close to 1).17

17As  and ∂F̃ e

∂C are between 0 and 1, the term
(

1− 
(
1 + 

2

)
∂F̃ e

∂C

)
lies in the range[

− 1
2 , 1
]
. It is positive for instance if ∂F̃ e

∂Ĉ
< 2/3 or if  <

√
3− 1 ≈ 0.73.
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6 Robustness

So far we have neglected light users’ demand for calls; the analysis however
still applies as long as light users call sufficiently less than heavy users. We
have also ignored self-selection constraints, which is fine if for example the
operators can explicitly discriminate light users from heavy ones, or if the
equilibrium tariffs are incentive compatible; the operators must otherwise
take into account self-selection constraints. We address these two issues in
turn.

6.1 Demand for calls from light users

We show here that our basic analysis applies when light users call as well,
although to a lesser extent than heavy users. To see this, we now suppose
that light users derive a utility �u (q/�) from calls (with the same balanced
calling pattern as for heavy users), where � is significantly lower than 1. For
the sake of exposition, we assume that explicit, third-price discrimination is
possible, but the reasoning extends as well to implicit, second-degree price
discrimination.

Letting p̃i denote the unit price of calls for light users, the per subscriber
demand for calls is then �q (p̃i), and the surplus from calls is (1 + �̃T ) �v (p̃i). We
extend the model by assuming that light users’ subscription demand now re-
lies on net surpluses: �̃i = D (−w̃i,−w̃j), where

w̃i = (1 + �̃T ) �v (p̃i)− F̃i.

The operators’ customer bases are then solution to the system:

�̃1 = D
(
F̃1 − (1 + �̃T ) �v (p̃1) , F̃2 − (1 + �̃T ) �v (p̃2)

)
,

�̃2 = D
(
F̃2 − (1 + �̃T ) �v (p̃2) , F̃1 − (1 + �̃T ) �v (p̃1)

)
, (19)

�̃T = �̃1 + �̃2,

and are uniquely defined for � small enough. Operator i’s profit is now:

Πi = �i [(1 + �̃T ) (pi − c) q (pi)− (�j + �̃j)mq (pi) + Fi − f ]

+ (�i + �̃i)�jmq (pj) + �̃i

(
F̃i − f̃

)
+ (�i + �̃i) �̃jm�q (p̃j) + �̃i� [(1 + �̃T ) (p̃i − c)− (�j + �̃j)m] q (p̃i) .

It differs from the benchmark profit by two terms (the last line in the above
equation), representing the termination and retail revenues generated by
light-users’ calls.
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We follow the same steps as before to derive equilibrium conditions. First,
keeping net surpluses wi and w̃i (and thus subscription demands) unchanged,
the effect of usage prices is the same as before; at a symmetric equilibrium,
we thus have again:

p̃i = pi = p∗ = c+
m

2
.

Second, for pi = p̃i = p∗, optimizing with respect to Fi yields, at a symmetric
equilibrium:

∂Πi

∂Fi

∣∣∣∣
�̃1=�̃2=�̃T /2,F1=F2=F

=
1

2
− � (F − f) + � (�̃T − 1)

mq∗

2
− ���̃Tmq∗.

Therefore, the equilibrium fixed fee F ∗ (�) is given by

F ∗ (�) = f +
1

2�
+ (�̃T − 1)

mq∗

2
− ��̃Tmq∗. (20)

Since light users now call heavy users, the competition weakening effect is
smaller; this is reflected in the term ��̃Tmq

∗, which includes the termination
revenue �mq∗�̃T/2 from light users calling the marginal heavy user, as well
as the cost saving �mq∗�̃T/2 on the calls from light users. Thus, for given
participation levels, accounting for light users’ calls intensifies competition
for heavy users.

Finally, it is shown in the appendix that the equilibrium is continuous at
� = 0:

Proposition 9 When � tends to 0, the equilibrium tariffs (and thus partici-
pation as well as call volumes) converge to the benchmark equilibrium values
(� = 0).

Proof. See appendix.
The conclusions of our analysis thus extend to the more general case

where the demand for calls of light users is positive but small. It is moreover
shown in the appendix that light users’ net surplus satisfies:

w̃∗ (�) = −F̃ e

(
f̃ − 3

4
mq∗ − �Ξ, mq

∗

4

)
,

where Ξ is positive for � and m close to 0, implying that light users’ partic-
ipation is higher when they have a positive demand for calls: when the ter-
mination charge is close to the termination cost, accounting for light users’
calls raises the participation of light users.
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6.2 Second-degree price discrimination

When operators cannot discriminate users explicitly (“third-degree” price
discrimination), they can still do so implicitly by offering a menu of options
that induce different customers to adopt different tariffs (“second-degree”
discrimination). In this case, however, simple two-part tariffs are not nec-
essarily optimal anymore, and more sophisticated tariffs can be desirable.18

For example, when light users have no demand for calls, offering them an
option that only allows for receiving calls does not lower their utility, and
makes the option less appealing for heavy users. As a result, in the absence
of on-net pricing the above analysis remains relevant as long as: (i) light
users prefer paying F̃ ∗ than F ∗; and (ii) heavy users favour instead the two-
part tariff (F ∗, p∗) to being able to receive calls for a flat fee F̃ ∗. In other
words, the above tariffs (together with a quota of zero calls for light users or,
equivalently, with a prohibitively high usage price) are incentive compatible
whenever:

F ∗ > F̃ ∗ > F ∗ − (1 + �̃∗T ) v(p∗) (21)

Similarly, when on-net pricing is allowed, heavy users must prefer the tariff
(F ∗, p = c, p̂ = c+m), and thus the analysis holds whenever:

F ∗ > F̃ ∗ > F ∗ − (1 + �̃T )
v + v̂

2
(22)

Conversely, under these conditions the equilibria are the same, whether the
operators can discriminate explicitly or must induce self-selection.

The situation is different when the above condition does not hold. For
the sake of exposition, we will focus here on the case where: (i) operators
cannot engage in on-net pricing, and: (ii) heavy users are the ones that may
be tempted to choose the contract designed for the other category of users
(that is, F̃ ∗ < F ∗ − (1 + �̃T ) v (p∗)).

Without loss of generality, the operators could restrict attention to op-
tions granting a fixed volume of calls, qi, for a given fee, Fi. It is moreover
clearly optimal here to set light users’ quotas to zero since this relaxes heavy
users’ incentive constraints, without any adverse effect on light users. As for
heavy users, there is no need to distort their usage (that is, qi = q∗), since

18Without loss of generality, operators could restrict attention here to ”quantity forcing”
contracts specifying a volume of calls in exchange of a flat fee. In more general contexts, in
which users’ demand for calls may for example be uncertain, smoother nonlinear contract
menus might be preferable. In practice, some contracts impose a cap, while others include
free minutes of calls which can be interpreted as a minimum level of usage.
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light users are not tempted by heavy users’ options anyway.19 Therefore, we
can interpret the operators’ offers as presenting two options, a two-part tariff
(Fi, pi = p∗) for heavy users and a flat rate F̃i for light users, which only
allows them to receive call. When designing their offers, the operators must
now adjust the fixed fees so as to accommodate heavy users’ self-selection
constraints, namely:

(1 + �̃T ) v(p∗)− Fi ≥ −F̃i.

The shadow cost of this constraint (which is binding when (21) is violated)
leads the operators to increase the fee for light users and decrease that for
heavy users:20

F < f +
1

2�
+ (�̃T − 1)

mq∗

2
,

F̃ > F̃ ∗ = F̃ e

(
f̃ − 3

4
mq∗,

mq∗

4

)
.

The second inequality implies that light users’ participation �̃T is reduced:
�̃T < �̃∗T . This, along with the first inequality, implies in turn that heavy
users face a lower subscription fee, F < F ∗. Notice that while light users’
welfare is reduced, the effect on heavy users’ welfare is unclear, since the
contraction of the market reduces their utility from calls.

7 Fixed to mobile termination charges

So far we have focused on MTM termination and ignored calls from/to fixed
networks. We now turn to the potential incentives to raise termination
charges for fixed to mobile calls. As for the calls to the fixed networks,
for the sake of exposition we will simply assume that all mobile users derive
a fixed utility from them, which is moreover the same on both networks.21

19As usual, there is thus “no distortion at the top” (that is, for the largest customers).
When light users have a demand for calls, their usage may instead be distorted downwards:
starting from a symmetric situation where q̃i = q∗, reducing slightly the volume of calls
below q∗ (while maintaining light users’ net surplus w̃i) does not affect light users but
relaxes heavy users’ incentive constraint and generates only a second-order loss of efficiency.

20A similar reasoning as above shows that the equilibrium conditions differ only by a
first-order term in �; the equilibrium allocations thus remain in the neighborhood when �
is small.

21In Europe, the termination charge of fixed networks is regulated and is the same
for all mobile operators. Introducing this feature in our framework, and allowing mobile
operators to discriminate between calls terminating on fixed and mobile networks, as is
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Thus, mobile users’ choice of network and usage are unaffected by the pres-
ence of fixed networks. The only difference is that now the network receives
an additional FTM termination revenue, �, which depends on the FTM ter-
mination markup and on the volume of calls that a mobile customer receives
from fixed networks, but is independent from mobile operators’ strategies: it
simply constitutes a “windfall gain” per customer, which amounts to reduce
the per customer fixed costs f or f̃ . In the absence of on-net pricing, the
equilibrium prices will thus be:

p∗ = c+
m

2
,

F ∗ = f − �+
1

2�
+ (�̃T − 1)

mq∗

2
,

F̃ ∗ = F̃ e

(
f̃ − �− 3mq∗

4
,
mq∗

4

)
.

In this context it is interesting to compare the effect of FTM termination
revenues on the subscription prices and the total bills of the two user cate-
gories. In the absence of light users, the FTM termination revenue would be
entirely passed through to customers: it is indeed immediate that ∂F ∗

∂�
= −1

for �̃T = 0. But with the presence of light users, the pass-through to heavy
users is only partial. The reason is that the prices for light users decrease:

∂F̃ ∗

∂�
= −∂F̃

e

∂C
< 0.

Their participation therefore increases, which in turn tends to weaken com-
petition for heavy users; as a result:

∂F ∗

∂�
= −1 +

mq∗

2
�̃′T

∂F̃ ∗

∂�
> −1.

Thus, while in the absence of light users, the FTM termination revenue
would be fully absorbed by a reduction in heavy users’ subscription fees, the
presence of light users limits this waterbed effect. The comparison between
the impact of the termination revenue on the two user categories depends on
the pass-through rate for light users:

Proposition 10 Increasing the FTM per customer revenue � reduces more
the subscription fee for heavy users than for light users if and only if ∂F̃ e

∂C
<

1/
(
1− mq∗

2
�̃′T
)
.

the case in practice, they then adopt the same price, reflecting the regulated cost of these
calls. Thus the utility derived from calls to fixed networks is indeed independent of the
network, and these calls moreover generate no profit for the mobile operators.
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Proof. It follows directly from the above analysis, since ∂F ∗

∂�
− ∂F̃ ∗

∂�
=(

1− mq∗

2
�̃′T
)
∂F̃ e

∂C
− 1.

A second question concerns the preferred level of termination rates. In the
absence of light users, the mobile operators are indifferent to the (common)
level of FTM termination rate, which does not affect their profits due to a
full waterbed effect. When light users are present, each mobile operator’s
profit becomes (replacing f̃ with f̃ − � in the previous expressions):

2Π∗ =
1

2�
+ �̃∗T

(
F̃ ∗ − f̃ + �+mq∗

)
.

Thus:

Proposition 11 Whenever �̃∗T > 0, as long as m ≥ 0 (or more generally if
F̃ ∗ > f̃ − � − mq∗), an increase in FTM termination revenue � raises the
equilibrium profit (while it has no effect on profit without light users).

Proof. We have:

∂ (2Π∗)

∂�
= �̃∗T +

[
�̃∗T + �̃′T

(
F̃ ∗ − f̃ + �+mq∗

)] ∂F̃ ∗
∂�

Since ∂F̃ ∗

∂�
< 0, this is positive if �̃∗T + �̃′T

(
F̃ ∗ − f̃ + �+mq∗

)
< 0. Suppose

instead that �̃∗T + �̃′T

(
F̃ ∗ − f̃ + �+mq∗

)
> 0. Since ∂F̃ ∗

∂�
> −1, we then

have:
∂ (2Π∗)

∂�
> −�̃′T

(
F̃ ∗ − f̃ + �+mq∗

)
,

and is thus positive if F̃ ∗ > f̃ − �−mq∗. In particular, from (6), replacing f̃
with f̃ − �:

F̃ ∗ − f̃ + �+mq∗ =
D

−D1

+ (1− ∗) mq
∗

4
,

and thus ∂ (2Π∗) /∂� > 0 whenever m ≥ 0.
Therefore, under fairly general conditions the mobile operators would

prefer to coordinate on a positive FTM termination markup.

8 Conclusion

This paper proposes an explanation of mobile operators’ reluctance to reduce
MTM termination rates. We show that the insights of the existing literature,
which suggest profit-maximizing rates at or below cost, rely critically on the
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related assumptions of fixed participation and full pass-through. Accounting
for the heterogeneity among users, we show that when the elasticity of sub-
scription and the intensity of usage are negatively correlated across users,
then the profit maximizing MTM (reciprocal) termination rate is instead al-
ways above cost in the absence of on-net pricing, and can still be so with
on-net pricing; in addition, the welfare maximizing termination rate is also
above cost, although it is below the former one in the absence of termination-
based price discrimination. We also study the robustness of these insights
when taking fixed to mobile termination revenues into consideration.

Our results thus imply that while some cap on termination rates is desir-
able, the regulated cap should be above termination costs. This optimal rate
depends on factors such as the proportion of light users and their demand
elasticity. Thus local market conditions matter, suggesting that, at least in
Europe, there should be some discretion left to national regulators in defining
these rates.

Our model has been motivated by casual observation of the mobile mar-
kets and of business practices. The analysis shows that demand heterogeneity
is a key element that needs to be accounted for in the regulatory debate. It
points to the need for better empirical facts on the composition of the de-
mand for mobile services and on the participation elasticities of the various
categories of users.
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A Proof of proposition 3

We have:

∂SH

∂m
= − (1 + �̃∗T )

q∗

2
+v∗�̃′T (F̃ ∗)

∂F̃ ∗

∂m
+(1− �̃∗T )

q∗ +mq′(p∗)/2

2
−mq

∗

2
�̃′T (F̃ ∗)

∂F̃ ∗

∂m
.

Therefore, at m = 0:

∂SH

∂m
= −�̃∗T q (c) + v (c) �̃′T (F̃ ∗)

∂F̃ ∗

∂m
= �̃∗Tv (c)

(
�̃′T
�̃T

(F̃ ∗)
∂F̃ ∗

∂m
− q (c)

v (c)

)
,

from which the expression (10) is obtained using v′ (c) = −q (c).

B Proof of proposition 8

We have:

∂ (2Π∗∗)

∂m

∣∣∣∣
m=0

= −q
2

+
(
�̃T + �̃′T

(
F̃ − f̃

)) ∂F̃ ∗∗
∂m

+ �̃T q,

where q = q (c), whereas �̃T and �̃′T are evaluated at F̃ = F̃ ∗∗ (0), character-
ized by (17):

F̃ − f̃ =
F̃

"
(
F̃
) = − �̃T

2D1(F̃ , F̃ )
.

Together with �̃′T = 2 (1− ̃)D1(F̃ , F̃ ), where ̃ = (F̃ ), this yields:

∂ (2Π∗∗)

∂m

∣∣∣∣
m=0

=
−q
2

+ �̃T q + ̃�̃T
∂F̃ ∗∗

∂m
.

In addition, from F̃ ∗∗ = F̃ e
(
f̃ − r̂+v−v̂

2
, v−v̂

2

)
:

∂F̃ ∗∗

∂m

∣∣∣∣∣
m=0

= −∂F̃
e

∂C
q +

∂F̃ e

∂Ĉ

q

2
.

Since F̃ e
(
C, Ĉ

)
is implicitly defined by(

F̃ − C
)
D1

(
F̃ , F̃

)
− ĈD2

(
F̃ , F̃

)
+D

(
F̃ , F̃

)
= 0,
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we have:
∂F̃ e

∂Ĉ

∂F̃ e

∂C

=
D2

D1

(
F̃ e, F̃ e

)
= −(F̃ e),

and thus:

1

q

∂ (2Π∗∗)

∂m

∣∣∣∣
m=0

= −1

2
+ �̃T

(
1− ̃

(
1 +

̃

2

)
∂F̃ e

∂C

)
.

C Proof of corollary 1

Using q = q̄ and q′ = 0, we have:

∂ (2Π∗∗)

∂m
= − q̄

2
+
∂F̃ ∗∗

∂m

(
�̃∗∗T + �̃′T

(
F̃ ∗∗ − f̃ +mq̄

))
+ �̃∗∗T q̄,

where

F̃ ∗∗ − f̃ = − �̃∗∗T

2D1

(
F̃ ∗∗, F̃ ∗∗

) − (1 +
∗∗

2

)
mq̄,

�̃′T = (1− ∗∗) 2D1

(
F̃ ∗∗, F̃ ∗∗

)
.

Thus:

1

q̄

∂ (2Π∗∗)

∂m
= −1

2
+ �̃∗∗T

+
1

q̄

∂F̃ ∗∗

∂m

⎛⎝�̃∗∗T + (1− ∗∗) 2D1

(
F̃ ∗∗, F̃ ∗∗

)⎛⎝− �̃∗∗T

2D1

(
F̃ ∗∗, F̃ ∗∗

) − ∗∗

2
mq̄

⎞⎠⎞⎠
= −1

2
+ �̃∗∗T +

1

q̄

∂F̃ ∗∗

∂m

(
∗∗�̃∗∗T − (1− ∗∗) ∗∗D1

(
F̃ ∗∗, F̃ ∗∗

)
mq̄
)
.

Since
∂F̃ ∗∗

∂m
= −q̄

(
1 +

∗∗

2

)
∂F̃ e

∂C
(., .) < 0,

for m < 0 the previous expression is larger than:

−1

2
+ �̃∗∗T

(
1 +

∗∗

q̄

∂F̃ ∗∗

∂m

)
= −1

2
+ �̃∗∗T

(
1− ∗∗

(
1 +

∗∗

2

)
∂F̃ e

∂C
(., .)

)
.
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D Proof of proposition 9

Using pi = p̃i = c+m/2 and Fi = F ∗ (�), operator i’s profit is equal to:

Πi =
1

2

[
(�̃i − �̃j)

mq∗

2
+ F ∗ (�)− f

]
+ �̃i

[
(�̃i − �̃j)

m�q∗

2
+ F̃i − f̃

]
+

(
1

2
+ �̃i

)(
1

2
+ �̃j�

)
mq∗

=
1

2

(
F ∗ (�)− f +

mq∗

2

)
+ �̃i

(
F̃i − f̃ +

3mq∗

4

)
− �̃j

mq∗

4
+
�mq∗

2

(
�̃2
i + �̃j + �̃i�̃j

)
.

Optimizing with respect to F̃i then yields, at a symmetric equilibrium F̃i =
F̃ ∗ (�):

∂�̃i

∂F̃i

[
(1 + ��̃T )

3mq∗

4
+ F̃ ∗ (�)− f̃

]
− ∂�̃j

∂F̃i
(1− � (2 + �̃∗T ))

mq∗

4
+
�̃∗T
2

= 0,

(23)

where �̃∗T = �̃T

(
F̃ ∗ (�)

)
and, using (19), the partial derivatives of the de-

mand can derived from ∂�̃T
∂F̃i

:

∂�̃i

∂F̃i
=

(
1− �v∗ (1− ∗) ∂�̃T

∂F̃i

)
D1 and

∂�̃j

∂F̃i
= −

(
∗ + �v∗ (1− ∗) ∂�̃T

∂F̃i

)
D1,

where ∗ = 
(
F̃ ∗ (�)

)
. Using these expressions and dividing (23) by ∂�̃i

∂F̃i

yields:

(1 + ��̃∗T )
3mq∗

4
+ F̃ ∗ (�)− f̃ + (1− � (2 + �̃∗T ))

mq∗

4

(
∗ + �v∗ (1− ∗) ∂�̃T

∂F̃i

)
(

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

)
= − D

D1

1

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

= − D

D1

− D

D1

�v∗ (1− ∗) ∂�̃T
∂F̃i

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

,

which can be rearranged as:

− D

D1

= (1 + ��̃∗T )
3mq∗

4
+ F̃ ∗ (�)− f̃

+ (1− � (2 + �̃∗T ))
mq∗

4

(
∗ + �v∗ (1− ∗) ∂�̃T

∂F̃i

)
(

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

) +
D

D1

�v∗ (1− ∗) ∂�̃T
∂F̃i

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

,
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or:

− D

D1

= F̃ ∗ (�)− � (1 + �̃∗T ) v∗ −
(
f̃ − 3mq∗

4

)
+ ∗

mq∗

4

+

⎛⎝(1− � (2 + �̃∗T ))

(
∗ + �v∗ (1− ∗) ∂�̃T

∂F̃i

)
(

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

) − ∗
⎞⎠ mq∗

4

+� (1 + �̃∗T ) v∗ + ��̃∗T
3mq∗

4
+
D

D1

�v∗ (1− ∗) ∂�̃T
∂F̃i

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

= F̃ ∗ (�)− � (1 + �̃∗T ) v∗ −
(
f̃ − 3mq∗

4

)
+ ∗

mq∗

4
+ �Ξ,

where:

Ξ =
(1 + ∗) v∗ (1− ∗) ∂�̃T

∂F̃i
− (2 + �̃∗T )

(
∗ + �v∗ (1− ∗) ∂�̃T

∂F̃i

)
(

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

) mq∗

4

+ (1 + �̃∗T ) v∗ + �̃∗T
3mq∗

4
+
D

D1

v∗ (1− ∗) ∂�̃T
∂F̃i

1− �v∗ (1− ∗) ∂�̃T
∂F̃i

.

Since D (.) is bounded with bounded derivatives, �̃T and

∂�̃T

∂F̃i
=

(1− )D1

1 + 2�v∗ (1− )D1

are well defined and uniformly bounded in a neighborhood of � = 0. More-
over D

D1

∂�̃T
∂F̃i

= (1−∗)D
1+2�v∗(1−∗)D1

is bounded. Therefore Ξ is bounded in such

a neighborhood. Since �Ξ converges to 0, assumption B implies that light

users’ net surplus, w̃∗ (�) = −
(
F̃ ∗ (�)− � (1 + �̃∗T (�)) v∗

)
, converges to−F̃ ∗.

The participation levels thus converge. Likewise, light users’ volume of calls,
(1 + �̃∗T ) �q∗, converges to zero.

Finally, light users’ net surplus, w̃∗ (�), satisfies:

−w̃∗ (�) = F̃ ∗ (�)− � (1 + �̃∗T ) v∗ = F̃ e

(
f̃ − 3

4
mq∗ − �Ξ, mq

∗

4

)
.

Compared to the benchmark case � = 0, the sign of Ξ determines whether
the participation level of light users increases or decreases with their demand
for calls. While in general the sign of Ξ is ambiguous, for � = 0 we have:

∂�̃T

∂F̃i
= (1− ∗)D1,
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and thus:

Ξ =
(
v∗ (1− ∗)2 (1 + ∗)D1 + 3− (2 + �̃∗T ) ∗

) mq∗
4

+
�̃∗T
2

(
v∗ (1− ∗)2

)
+ (1 + �̃∗T ) v∗,

which is positive for m small enough.
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