Version: November 5, 2002

Risk Management in Electricity Market Design

Hung-po Chao
EPRI and Stanford University

For presentation at

Conference on Wholesale Markets for Electricity

Toulouse, November 22-23, 2002

Outline

- Introduction
- Basic questions of risk management
- Effects of restructuring on regulatory compact
- How to restructure utility service obligation
- Conclusion

Attributes of Electricity and Incomplete Markets

- Electricity is not storable
 - Demand and supply must be balanced in real-time
 - System reliability is a public good
- Externality is prevalent throughout the system
 - Excessive peak demand reduces system reliability
 - Transmission congestion/losses due to loop flows
 - Environmental impacts
- The network is governed by non-convexity
 - Economies of scale/scope
 - Shift factors vary with power flow patterns
 - Fixed unit commitment costs, minimum run
- Commercial exchange is handicapped by the limited availability of real-time transaction information

Two Types of Risk

- Price risk: private risk ⇔ investment adequacy
 - Spot markets
 - Forward/futures/options markets
 - Long-term contracts
- Quantity risk: public risk ⇔ system reliability
 - Generation scarcity ⇒ market power & unreliable system operation
 - Transmission scarcity ⇒ fragmented system & local market power

Restructuring Raises Basic Questions of Risk Management

- Vertical integration provides insurance along supply chain
 - Vertical integration buffered price volatility
 - Retail rate regulation smoothed effects on customers
 - ROR regulation insured utilities and their investors
- Vertical unbundling results in redistribution of risks
 - Utility becomes a financial intermediary using long-term contracts and other financial instruments
 - Default service obligation needs to be restructured
 - Develop price-responsive demand so that some risk can be shifted to retail customers

Regulatory Compact

- Franchise control
- Rate making
- Utility service obligation

More on Regulatory Compact

- Franchise control The state commission controls the entry of the utility's competitors and the exit of its customers
- Rate making The commission authorizes rates that allow the utility a reasonable opportunity to earn a fair rate of return on investment that reflects the cost of capital financed in debt and equity markets
- Utility Service Obligation (USO)
 - The utility must comply with regulatory accounting procedures for cost disclosure and price regulation
 - The utility must meet service quality standards and invest in transmission and access services to all customers within its service territory
 - The utility must operate efficiently and make only prudent investments as determined by the regulatory commission

Change Began with PURPA Which Gives the IPP's an Option to Enter

Restructuring Gives Large Customers the Option to Exit

Restructuring Causes Utility's Cost and Risk to Rise

- Large base-load customers find bilateral contracts more attractive
- The utility is susceptible to adverse selection with a deteriorating load shape
- The cost of service will rise, causing an increase in the number of rate hearings
- Long-term contracts will receive close scrutiny in regulatory review with unpredictable results
- This results in an increase in the business risk and the cost of capital
- The cost of service will increase still further

Restructuring Utility Service Obligation is Key to a Sustainable Regulatory Contract

- Differentiated service pricing is essential to mitigate the problem of adverse selection
- Price-responsive demand is imperative to allow some risk to be shifted to retail customers
- Key elements of USO restructuring
 - Differentiation of load shape
 - Risk sharing of reliability

Load Shape Pricing Mitigates the Adverse Selection Problem

- Rate = Min [Fixed capital charge + Variable charge*Load factor]
- Payment = Rate*Maximum contracted load

A Consumer Choice Model for Spot Purchase and Contract

- Consumers decide on spot purchase (q_s) and contract (q_c)
- Spot price at time t is $p_s(t)$; price schedule for contract is (k, c)
- The capital cost for generation in spot market is k_s

$$\begin{aligned} & \underset{q_{s},q_{c},\hat{q}_{c}}{\text{Max}} \int_{0}^{T} U_{t}(q_{s}(t) + q_{c}(t)) - p_{s}(t)q_{s}(t)dt - k\hat{q}_{c} - c\int_{0}^{T} q_{c}(t)dt \\ & q_{c}(t) \leq \hat{q}_{c}, q_{c}(t) \geq 0, \ q_{s}(t) \geq 0 \end{aligned}$$

$$k\hat{q}_{c} + c\int_{0}^{T} q_{c}(t)dt = \int_{0}^{T} p_{s}(t)q_{c}(t)dt \iff k = \int_{0}^{T} [p_{s}(t) - c]^{+} dt = k_{s}$$

Impacts of Competitive Wholesale Markets on Retail Business

- Competing with direct access and bilateral contracting, the utility need to win back base-load customers
- This can be done through differentiation of retail rates by load shape
- Risk averse consumers can subscribe hedging services
- The utility could collect a premium for bearing the risk of the price variation in the spot market
- When the cost-of-capital for production in spot market is greater than the cost-of-capital for contract, the utility will compete in the financial intermediary service

Theoretical Relationship Between Wholesale and Retail Rates

- Retail rate = Expected spot price for each category of service + risk premium
- The first component can be computed using a price duration curve

Sharing Reliability Risk Implies Non-firm Default Service

- Under restructuring, the concept of default service becomes ambiguous
- The obligation to serve at any spot price is unsustainable
- Continued ambiguity will deter demand response

Equilibrium Relationship Between Wholesale and Retail Rates

• Retail rate = $\int\!\!E\{p(t)\;|c\leq p(t)\leq trigger,\;T_0\leq t\leq T_1\}dt+risk\;premium$

Risk Sharing Fosters Demand Response and Competitive Markets

Conclusion

- Restructuring poses major risk management challenges in power market design
- Vertical unbundling exposes the regulatory compact to the adverse selection problem
- Service differentiation and risk sharing are essential for new regulatory compact
- Effective risk management fosters demand response and competitive markets